INSTRUCTION BOOK
OF
CARS
S.S. I. AND S.S. II. MODELS
PRICE 5/-

CARS LTD.
FOLESHILL, COVENTRY, ENG.
Telephone: 8027 (Six Lines) Telegrams: "Swallow, Coventry"
PREFACE

THIS book of instructions has been compiled to give assistance to the owner of the S.S. I or S.S. II in the care and maintenance of the car, and all matter included is relative to both models except where otherwise indicated.

Every effort has been made in design to render the few adjustments easy and accessible.

The continued good running of a car depends essentially upon the care and attention it receives from the owner, and we earnestly recommend that careful attention be paid to the following instructions, particularly to those which deal with general upkeep and lubrication. All the necessary maintenance instructions for body, engine and chassis, are combined in the Mileage and Maintenance Diary incorporated in this book.

It is unlikely that the owner will desire to carry out major repairs, but an intimate knowledge of the details and assembly will give at least a greater interest in the car's running and increased confidence in the rare event of a mishap. This book is fully illustrated and, by the aid of the descriptions given, it should be easy for those of a mechanical mind to obtain a working knowledge of the car.

A section will be found at the end of the book which will enable the owner to trace any fault and correct it. Should any further information be required, our Technical Department will be pleased to give all possible assistance.

The car will run for many thousands of miles before a general overhaul becomes desirable, and the work then entailed should be carried out by a skilled mechanic. We have not, therefore, given detailed instructions for dismantling the units, but the mechanical parts are illustrated in detail for the benefit of the mechanic who will have the work to do. It is desirable that any overhaul or repair work should be carried out at the works or by one of our Agents, who, being familiar with the construction of the car, are suitably equipped to give after sales service to S.S. owners.

COMPLIMENTARY COPY
MEMOS. AND LICENCE DATA.

Personal Memos.

Owner's Name
Address
Telegraphic Address
Telephone Number
Notes

Car Memos.

Date of Car Purchase
Insurance Policy
R.A.C. or A.A. Number

Licence Data.

Registration Number
Car Licence Date
Driver's Licence Number

Car Number (Commission No.)

Given under bonnet at o/s. of Engine.

Engine Number

16 H.P.
20 H.P.
10 H.P.
12 H.P.

S.S. I.
S.S. II.

Number of Cylinders

6
6
4
4

Diameter of Cylinders

65.5 m/m.
73 m/m.
63.5 m/m.
69.5 m/m.

Stroke of Piston

106 m/m.
106 m/m.
106 m/m.
106 m/m.

Capacity of Engine

2143 c.c.
2663.7 c.c.
1343 c.c.
1608.5 c.c.

R.A.C. Rating

15-96
19-84
10
11-98

Tax (Annual)

£16
£20
£10
£12
The S.S. I. and S.S. II. Chassis are shown above prepared for body mounting.

The S.S. I. view is taken from the near side, and the S.S. II. from the off side, therefore, both illustrations are instructive, as the parts indicated are similar on all S.S. Models.
GENERAL DATA.

16 H.P. 20 H.P. 10 H.P. 12 H.P.
S.S. I. S.S. I. S.S. II. S.S. II.
Number of Cylinders ... 6 6 6 4
Bore of Cylinders, m.m. 65-5 73 63-5 69-5
Stroke of Crank, m.m. 106 106 106 106
Cubic Capacity, c.c. 2143 2663-7 1343 1608-5
Compression Ratio ... 6-1 6-1 6-1 6-1
Firing order ... 1.5.3.6.2.4 1.5.3.6.2.4 1.3.4.2 1.3.4.2
Brake Horse Power at 1,000 r.p.m. 17 22 10 12
2,000 ... 36 45 22 26
3,000 ... 50 63 29 35
Peak ... 3,600 68 32 38
Peak ... 3,800 — 53 —

Oil Capacity.
Engine S.S. I. S.S. II.
... 16 pints 9 pints
Gearbox 2 2
Rear Axle 3 2

Water Capacity of Radiator and Engine 32 22
Amount of anti-freeze glycerine to use in Winter 8 5

Petrol Capacity.
Wheelbase 9' 11" 8' 8"
Track 4' 5" 3' 10½"
Turning Circle (between curbs) 40' 36'
Tyre Size 5.50x18 4.75x18

Overall Dimensions.
Length 15' 6" 14"
Width 5' 5½" 4' 7"
Height 4' 7" 4' 6½"

Car Weights (ready for the Road) Cwts. Qrs. Lbs. (Less Petrol)
S.S. I. 25 2 0
S.S. II. 20 1 0

Valve Timing Diagram.
Flywheel diameter, 11½ ins. adjacent to 14" Piston Travel
start gear teeth.
10° = 0.99 Ins.
50° = 4.96 Ins.

Ignition Timing.
S.S. I. Set to fire at 14° before T.D.C. on full retard = 1-38° on flywheel.
S.S. II. Set to fire 17° before T.D.C. on full retard = 1-69° on flywheel.

N.B.—These settings represent the starting points when timing the ignition. Individual engines may require slight adjustment above or below these points.

ROAD SPEED DATA.—S.S. I.

We give below tables showing the engine speeds in revolutions per minute, relative to car speeds in M.P.H. in the various gears.

<table>
<thead>
<tr>
<th>M.P.H.</th>
<th>17.1 to 1</th>
<th>10.04 to 1</th>
<th>6.52 to 1</th>
<th>4.75 to 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>First and Reverse</td>
<td>Second</td>
<td>Third</td>
<td>Top</td>
</tr>
<tr>
<td>5</td>
<td>1025</td>
<td>602</td>
<td>391</td>
<td>285</td>
</tr>
<tr>
<td>10</td>
<td>2050</td>
<td>1204</td>
<td>792</td>
<td>570</td>
</tr>
<tr>
<td>15</td>
<td>3075</td>
<td>1806</td>
<td>1173</td>
<td>855</td>
</tr>
<tr>
<td>20</td>
<td>4100</td>
<td>2408</td>
<td>1564</td>
<td>1140</td>
</tr>
<tr>
<td>25</td>
<td>5125</td>
<td>3010</td>
<td>1955</td>
<td>1425</td>
</tr>
<tr>
<td>30</td>
<td>6150</td>
<td>3612</td>
<td>2346</td>
<td>1710</td>
</tr>
<tr>
<td>35</td>
<td>7175</td>
<td>4214</td>
<td>2737</td>
<td>1995</td>
</tr>
<tr>
<td>40</td>
<td>8200</td>
<td>4816</td>
<td>3128</td>
<td>2280</td>
</tr>
<tr>
<td>45</td>
<td>9225</td>
<td>5418</td>
<td>3519</td>
<td>2565</td>
</tr>
<tr>
<td>50</td>
<td>10250</td>
<td>6021</td>
<td>3910</td>
<td>2850</td>
</tr>
<tr>
<td>55</td>
<td>11275</td>
<td>6623</td>
<td>4301</td>
<td>3135</td>
</tr>
<tr>
<td>60</td>
<td>12300</td>
<td>7225</td>
<td>4692</td>
<td>3420</td>
</tr>
<tr>
<td>65</td>
<td>13325</td>
<td>7828</td>
<td>5083</td>
<td>3705</td>
</tr>
<tr>
<td>70</td>
<td>14350</td>
<td>8430</td>
<td>5472</td>
<td>3990</td>
</tr>
<tr>
<td>75</td>
<td>15375</td>
<td>9032</td>
<td>5859</td>
<td>4275</td>
</tr>
<tr>
<td>80</td>
<td>16400</td>
<td>9634</td>
<td>6246</td>
<td>4560</td>
</tr>
</tbody>
</table>

Final Drive. No. of teeth in spiral bevel pinion 8
No. of teeth in spiral bevel crown wheel 38

SAFE ENGINE SPEED LIMITS.

Although this engine is capable of "revving" very fast, yet continued "over-revving" should be avoided. It is in first and second gears that "over-revving" is most likely to occur, and reference to the table above will show the high engine speeds attainable.

Although the car is capable of higher speeds, we strongly recommend that the driver shall not continually exceed the following speeds, and it is of value to remember that the engine wear and tear at 5000 r.p.m. is double that obtaining at 3500 r.p.m.

<table>
<thead>
<tr>
<th>Gear</th>
<th>Engine Speed</th>
<th>Road Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td>First</td>
<td>3600 R.P.M.</td>
<td>17.5</td>
</tr>
<tr>
<td>Second</td>
<td>3600 R.P.M.</td>
<td>30</td>
</tr>
<tr>
<td>Third</td>
<td>3600 R.P.M.</td>
<td>46</td>
</tr>
<tr>
<td>Top</td>
<td>4000 R.P.M.</td>
<td>70</td>
</tr>
</tbody>
</table>
ROAD SPEED DATA.—S.S. I.

We give below tables showing the engine speeds in revolutions per minute, relative to car speeds in M.P.H. in the various gears.

<table>
<thead>
<tr>
<th>10 H.P.</th>
<th>MILES PER HOUR</th>
<th>12 H.P.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st and Reverse 19-17</td>
<td>1st and Reverse 20-85</td>
<td>1st and Reverse 19-17</td>
</tr>
<tr>
<td>20-85</td>
<td>12-84</td>
<td>3rd 7-06</td>
</tr>
<tr>
<td>1316</td>
<td>810</td>
<td>245</td>
</tr>
<tr>
<td>2632</td>
<td>1620</td>
<td>970</td>
</tr>
<tr>
<td>3948</td>
<td>2430</td>
<td>1455</td>
</tr>
<tr>
<td>5264</td>
<td>3240</td>
<td>1940</td>
</tr>
<tr>
<td>4050</td>
<td>2425</td>
<td>1670</td>
</tr>
<tr>
<td>4860</td>
<td>2910</td>
<td>2004</td>
</tr>
<tr>
<td>3395</td>
<td>2338</td>
<td>35</td>
</tr>
<tr>
<td>3880</td>
<td>2672</td>
<td>40</td>
</tr>
<tr>
<td>4365</td>
<td>3006</td>
<td>45</td>
</tr>
<tr>
<td>4850</td>
<td>3340</td>
<td>50</td>
</tr>
<tr>
<td>3674</td>
<td>355</td>
<td>55</td>
</tr>
<tr>
<td>4008</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>4342</td>
<td>65</td>
<td>65</td>
</tr>
<tr>
<td>4676</td>
<td>70</td>
<td>70</td>
</tr>
</tbody>
</table>

Final Drive. No. of teeth in spiral bevel pinion ... 7 7
No. of teeth in spiral bevel crown wheel ... 37 34

SAFE ENGINE SPEED LIMITS.

Although this engine is capable of "revving" very fast, yet continued "over-revving" should be avoided. It is in first and second gears that "over-revving" is most likely to occur, and reference to the table above will show the high engine speeds attainable.

Although the car is capable of higher speeds, we strongly recommend that the driver shall not continually exceed the following speeds, and it is of value to remember that the engine wear and tear at 5000 R.P.M. is double that obtaining at 3500 R.P.M.

<table>
<thead>
<tr>
<th>Gear</th>
<th>Engine Speed</th>
<th>Road Speeds</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10 H.P.</td>
<td>12 H.P.</td>
</tr>
<tr>
<td>First</td>
<td>3600 R.P.M.</td>
<td>13-5 M.P.H.</td>
</tr>
<tr>
<td>Second</td>
<td>3600 R.P.M.</td>
<td>22 M.P.H.</td>
</tr>
<tr>
<td>Third</td>
<td>3600 R.P.M.</td>
<td>37 M.P.H.</td>
</tr>
<tr>
<td>Top</td>
<td>4000 R.P.M.</td>
<td>60 M.P.H.</td>
</tr>
</tbody>
</table>

S.S. DRIVING HINTS.

Easy Starting. When the engine is cold, a primary charge should be given before turning on the ignition. This will be accomplished if the following instructions are complied with in sequence.

1. If the battery is in a low condition and the engine has been stationary for several hours, first operate the petrol pump hand primer, at the same time lifting the carburettor needle with the left hand. This will compensate for the loss of petrol through evaporation.
2. Depress accelerator pedal about half way and retain in this position.
3. Pull out choke control.
4. Press starter button with the right hand, and after a few revolutions of the engine, switch on ignition.

Shock Absorber Adjustment. The Andre friction type shock absorbers fitted to the S.S. I. and S.S. II. models have been chosen in preference to the hydraulic type, because the damping characteristics are more suitable for the type of springing used on these models, and also because of the advantages obtainable by the simple adjustment provided to suit varying conditions of travel.

Adjustment is desirable before commencing a long distance journey, when it will be advisable to tighten the adjusting nuts, thus increasing the resistance and preparing the shock absorbers for higher speeds likely to be obtained on long distance travel.

For the average town work a lesser resistance is required to obtain maximum comfort, the adjustment required varying according to road conditions.

Brakes (after car washing). When the car is washed with hose, water may enter the brake drums, and as water acts as a lubricant on the linings the friction will be reduced, thus making the brakes less efficient. Always 'try' the brakes after the car has been washed, and if it is found that water has entered the drums, drive the car for a short distance with the handbrake slightly on, to dry off the water. It is advisable to keep the handbrake "on" when washing the car, and this will help to prevent water from getting on to the brake surfaces.

Seat Operation. Simple and efficient seat slides are provided, both for adjustment and for easy entry to and from exit and the front seats. It is possible to enter and leave the seats without utilising the adjustment, but we would strongly advise our customers to carry out the following instructions and thus enjoy the maximum comfort obtainable. When the driver or passenger is entering, the seat should be in the extreme rear position, and when occupied should be moved forward to the desired position before closing the door. When leaving the car, the door should first be opened and the seat then moved to the rear. The seat will now be in the correct position for leaving and re-entering the car.

High Curbs. We would advise the owner to be wary of drawing up too close to high curbs and to acquire a habit of leaving about a foot clearance between the road wheels and the curb, thus avoiding possible damage to the low sweeping front wings.

Reducing Accumulator Discharge. In extremely cold conditions, the oil resistance to the engine and gears is considerably increased, resulting in excessive battery discharge when the starter is in operation. To counteract this, the load on the starter will be reduced by depressing the clutch pedal, thereby eliminating the friction and oil resistance obtaining in the constant mesh gears. The observance of the easy starting instructions above will also conserve the energy in the battery.

It is an advantage to disengage the clutch at any time when operating the starter, particularly when the accumulator is low.
CARE OF COACHWORK AND GENERAL INSTRUCTIONS.

As we have always enjoyed a reputation for high-class coachwork, we are naturally eager that our cars should retain their perfection and immaculate appearance after they have left our hands. For this reason, and for our customers' satisfaction, we advise all S.S. owners to ensure that the following instructions are complied with.

Cellulose. Have your car washed and polished once a week. See that all dirt is removed with a soft sponge and hose pipe. Dry the car thoroughly with a good quality wash leather, apply a small quantity of Swallow polish to a fine muslin cloth and polish an area about four square feet until the cloth becomes dry. Replenish with polish and repeat the operation in another place, and so on until the whole car has been covered. Finish off with a clean, dry cloth. Replacement tins of polish are obtainable from the S.S. works or through any of our agents.

Tar remover can be obtained from the works or from any garage, which is quite harmless to the cellulose. Petrol is a good substitute if used within a short time of the tar being picked up.

Fabric. If the fabric has become very dirty, it will be necessary to cleanse with soap and water, using a sponge and a leather. A soft brush may be used with discretion if found necessary.

When the fabric is not unduly dirty, a clean bright finish will be obtained by cleansing with a dry duster and applying a coat of S.S. Brushing Polish, using a soft brush for application and one for polishing, then a final polish with clean mutton cloth will give very pleasing results. Tins of S.S. Brushing Polish are obtainable from the S.S. works or through any of our agents. Colour of fabric should be stated when ordering.

Interior Hide. The seat upholstery may be cleaned with soap and water, using a sponge and leather. Greasy marks should be removed with a soft cloth soaked in clean petrol.

Interior Head Lining. Head lining will be kept in reasonably clean condition if cleaned frequently, using a soft hat brush or a piece of mutton cloth soaked with petrol and applied smartly, but without pressure.

Carpets. Carpets may be cleaned with petrol after the usual brushing.

Cabinet Work. Cappings and instrument board may be polished in the same manner as cellulose.

Seat Cushions. When replacing cushions, be careful that they are in their correct positions, i.e., the front cushions have two different radii at the front corners, the larger radii coming together nearest the centre of the car.

Replace front and rear cushions with front end into the frame first. The rear cushions are shaped to fit, and a little observation will suffice to place these in their respective positions.

Driving Mirror. The mirror should be set to reflect through the rear and off-side quarter lights, and if set correctly the trafficators will also be reflected. The glass is held in spring-loaded claws, which should grip the extreme rear side end of the mirror, to permit a radial movement in an anti-clockwise direction.

Once the mirror has been set, with the thumb screw definitely tight, the vertical focus will remain permanent, but the horizontal focus will be adjustable by fingertip control. This arrangement allows the mirror to be situated in the most serviceable position. The roof lock, wiper and driving mirror are situated together in a central position, therefore the mirror should be moved out of the way as described above, before operating the roof lock or screen wiper.

Chrome. All parts chromium plated on steel should receive attention with Chrome Shine at least once a week.

Chrome cleaning is essential, particularly where there is a foundation of a ferrous metal, i.e., steel bumper, in order to prevent an accumulation of red oxide on the chrome surface. The weekly use of Chrome Shine will prevent this rust deposit, but if the accumulation of red oxide is permitted to remain on the surface for a considerable time it will be very injurious to the chrome itself.

Bonnet Hinges. The centre and side hinges should be lubricated frequently to obviate rust and creaks.

Open Four-Seater Hood. To fold hood, the following instructions should be observed in sequence (but first ensure that hood material is dry). Detach valances, release hood screen locks, lift hood bodily to rear with all joints locked, break frame joints and place both hands on top hood rail, exerting downward pressure and allowing hood material to hang clear of framework. (Be careful to avoid trapping hood material between the sticks.) Now fold all surplus material neatly on top of framework and fit the envelope and tonneau cover.

Seat Slides. These require very little attention, but it is advisable to check over the securing bolts and apply a little grease to the runners occasionally, to ensure smooth operation.
COACHWORK.

Open Four-Seater Side Curtains. A pocket and satchel is provided in the rear trunk, to house the complete set of six side curtains and two hood valances. These should be placed in position carefully to avoid damage, as a precaution each curtain may be wrapped in soft cloth to keep the celluloid free from scratches.

To pack away the complete set of curtains neatly and compactly, the following instructions should be observed:

Take the near side front curtain (near side indicates left side of driver), fold and place in the inside satchel on the near side, with the feet uppermost; take the second near side curtain and place it between the folded front curtain, also with the feet uppermost. Now place away the two front off side curtains in the same satchel on the off side. The two rear curtains may now be placed on each side of the outside satchel with the feet uppermost.

The hood valances should be rolled up separately and placed at each end of the pocket.

Door Hinges. These should receive occasional attention with the grease gun to the grease nipples provided.

Body Creaks. To preserve the silence of the body work, occasional attention is necessary.

The bonnet creaks, which supports the bonnet both at the scuttle and radiator, should be coated with grease, or an anti-squeak compound, occasionally.

The bolts securing the body to the chassis, also the wing and bonnet bolts, should be checked over once in every six months. If at any time a bad body creak should develop, this will be the surest method for rectification. If the creak has not then been located, after the above adjustment, check over the rear seat well fixing bolts, seat fittings, and all bolts visible under the bonnet.

We are including the above advice for the benefit of S.S. owners who cannot find it convenient to return their car to the works, but we would point out that in the event of a bad body creak developing, the car should be returned to the works, or to the nearest S.S. Agent, where rectification will be speedily carried out.

Door Locks and Buffers. The bearing surfaces of the lock bolts should receive occasional attention with thin oil; a felt pad is fitted directly behind the lock plate and is permanently in contact with the bearing surface of the lock bolt. This pad will absorb the thin oil and provide constant lubrication. It is essential to ensure the lock bolt is completely home after the door has been closed, as the lock is liable to remain open when the door has been closed carelessly. This can be checked by observing the amount of play or loose movement in the exterior or interior door handles. It is advisable to acquire the habit of testing in this way before the hand is taken away from the door handle.

Hub Caps. Hub caps should be treated with an application of grease to the bearing surface which comes in contact with the wheel hub, to facilitate easy removal when occasion arises.

Access to Back Axle Filler. To refill the back axle, remove the two screws securing the inspection cover, which will be found on the floor of the trunk. This will reveal a filler plug in the rear of the axle casing, which should be removed with the adjustable spanner. The oil level plug is situated at the near side front of the axle casing; this plug should be removed before filling to avoid over-oiling.

Access to Gearbox Filler and Remote Control Nipples. Remove the detachable carpet from the transmission arch, indicated on Fig. 3, when the gearbox filler and the remote control grease nipples will be exposed.

COACHWORK.

Open Four-Seater Door Straps. A steel strap is incorporated in the framework of both doors to maintain a slight constant tension on the lock and thus obviate rattles.

This strap is anchored at the top of the hinge pillar and passes through the front bottom corner of the door, where adjustment is obtained by means of a 1" box spanner. In the event of a door developing rattle, the tension on the strap should be increased by turning the nut provided one or more turns in a clockwise direction.

Dismantling Back Axle. Before attempting to remove the back axle, the following instructions should be complied with in numerical order:

1. Remove two end bumper bolts.
2. Remove centre bumper bolt.
3. Detach bumper bar.
4. Release rear wing valances.
5. Remove trunk floor boards.
6. Remove two bottom bolts and the six coach bolts fixing trunk and back of body to chassis brackets.
7. Remove the five wood screws securing trunk to body.
8. Now remove trunk complete.
9. Remove bolts securing back axle hoops to chassis.
10. Remove chassis standing brackets. (See Fig. 14).
11. Remove petrol tank.
12. The axle can now be dismantled in the usual way and drawn out from under the back of the body.

Screen Wiper. Lubricate the exterior working parts occasionally. The interior parts are packed with grease on assembly and no further lubrication is required.

Door Light Replacement. If at any time a door light is accidentally damaged, the nearest S.S. agent will gladly obtain and fit a replacement at current charges, or alternatively a replacement will be supplied direct from the works on request. If it is not convenient for the change over to be effected by a coach builder, we would advise the owner to simplify the operation by removing the channel from the damaged glass and forwarding this along with the order, so that our works may attach this to the replacement. In the latter case, your order should stipulate which door light is damaged, i.e., near side (passenger), off side (driver). Instructions for replacement are given in correct sequence as follows:

1. Remove polished fillets from both pillars (4 screws).
2. Remove facia panel and capping. See Illustration No. 3.
3. Wind glass down and remove screw or tack securing the rear felt glass channel. The channel will then lift out.
4. Wind glass up to within half-an-inch of door top.
5. Now take glass in both hands and pull out rear edge towards you.
6. The door light will now wind up to the top and the glass channel disengage from the lifting mechanism.

To fit the new door light simply reverse instructions.

Trafficator Replacement. To replace a damaged indicator, remove the three screws securing the opening panel provided in the interior trimming directly behind the Trafficator. This panel will open and expose the complete indicator mechanism.

In the case of the four-light saloon, on which the indicator is fitted in the bottom quarter panel, it will first be necessary to remove the polished capping before opening the casing for access to the Trafficator.
COACHWORK.

Battery Removal. To remove the battery the following instructions should be observed:
1. Remove the two screws securing the battery lid.
2. Push both securing rods down as low as the split pins will permit.
3. Remove battery lid.
4. Now pull the battery towards the off side (near side on S.S.I.) and carry it away.

(S.S. I. The battery is very heavy; it is therefore advisable to balance the right foot on the starter motor to avoid physical strain.)

Bedford Silent Bloc Type Buffer. This buffer is fitted to increase the stability of the doors when closed and is designed to operate as a valuable damper on door rattles. There is an adjustment provided as shown in Illustration No. 3, which is operated in a clockwise motion to take up wear which may develop in the insulated bush; a metallic rattle in the vicinity of the lock and buffer will indicate that the above adjustment is required.

Private Door Locks. A locking handle is fitted to the off-side door and two keys are provided. If a replacement key is required at any time, read the letters and numbers stamped on the handles and stipulate these in your order to the works. An interior locking device is provided to the near side door, which is operated by reversing the opening action and exerting extra pressure at end of travel. See Illustration No. 3.

Interior Door Handles. The lock and winder handles are secured to the shanks by a pin neatly concealed beneath the spring loaded bush. See Illustration No. 3. To detach a handle, compress the bush and push the pin through with a garnish awl or other suitable instrument.

Opening Back Light. The opening back light provides ideal ventilation and extracts smoke and bad air. The method for opening is to release the security fasteners, when the spring loaded telescopic arms will automatically open and secure the light. Lubricate the working parts occasionally.

GENERAL UPKEEP.

Regular Inspection. The oil level in the engine sump must be maintained at correct level. (The dip stick should be checked frequently and the oil level kept up to the mark). To inspect oil level, withdraw dip stick and wipe clean. Replace and again withdraw, when the level will be indicated by the oil film retained on the dip stick. Engine should not be running when inspecting oil level.

Cooling System. The water level in radiator should occasionally be examined and, if necessary, replenished until the water rises within approximately two inches from top of filler neck.

It is advisable to use rain water when replenishing the radiator, as the use of hard water results in a deposit on the inner side of the cooling surfaces, thus reducing efficiency. Yet even with the use of soft water, certain impurities accumulate and the water becomes contaminated with red oxide from the water ways in the cylinder block. To obviate this condition and eliminate the necessity for the use of soft water, a liquid vegetable composition may be obtained (see page 74) named “Kyrac,” which when used constantly with water in the radiator removes all foreign matter adhering to the radiator and water jacket of the engine, and leaves a slight film on the metal surfaces, which prevents rust or any matter adhering to or obstructing any portion of the cooling system. With the use of “Kyrac,” the system should be drained once every 5,000 miles and clean water run through before replenishing.

Ammeter Readings. Observe that the dynamo is charging and the oil pressure gauge registers when the engine is “revved” up. It must be remembered when noting ammeter readings that when the battery run down the ammeter will indicate a high charge rate. As the battery gets more fully charged the ammeter reading falls, and when the battery has reached a fully charged state the ammeter will not indicate more than a few amperes on the charge side. After starting, particularly from cold, the driver will note the rise of charging current for perhaps ten minutes or so. Thereafter it falls to the customary trickle charge for a fully-charged battery.

The acid level in the battery should be examined monthly, and is accessible by lifting the bonnet.

1. The acid should be kept level with the top of the separators.
2. Use only distilled water when replenishing (obtainable from the local garage or chemist). Do not overfill or the acid may splash out and cause damage.
3. Keep the filler plugs screwed tight to prevent leakage of acid.

Tyre pressures should be checked weekly with a “Schrader” gauge. The correct pressures are given on page 25.

Controls. The position of the various controls will be readily understood by a study of the accompanying Illustration No. 3.

A throttle control is provided by which the idling speed of the engine can be governed. When the engine is cold it will be necessary to set this control a little “faster” than when the engine is warm, but it should at all times be set to “run” as slowly as possible according to conditions.

When the dynamo output is insufficient to charge the battery, the red warning light appears, indicating that current is being drawn from the battery for ignition purposes. The ignition switch should never be left on with the engine stationary for more than a few moments. A habit should be made of “switching off” and the red warning light simply serves as a reminder when this operation has been forgotten.
GENERAL UPKEEP.

A habit should also be made of occasionally reading the oil pressure gauge and ammeter during the course of a run, to see that the oil pump and dynamo are functioning correctly. The oil pressure should read not less than 30 to 40 lbs. per square inch when the car is travelling at normal speeds and the oil is hot.

To Start the Engine. Place the gear lever in the neutral position and see that the handbrake is on, pull the strangler control right out, slightly depress accelerator pedal, and operate starter. When engine is turning switch ignition on as soon as the engine fires, release the starter button, push back the strangler to half-open position, and as the engine warms up it will be possible gradually to push the strangler control right in, but without causing the engine to run with undue hesitation.

It is important that the strangler should not be used more than is absolutely necessary, as the prolonged use of a rich mixture causes the fluid petrol to wash the oil off the working parts, resulting in rapid wear.

In winter the oil in the engine and gearbox becomes thick when the car has been standing for some hours, this causes the engine to be stiff and to require an unusual effort to turn it. It is therefore an advantage to depress the clutch pedal to relieve the starter of the gear oil resistance. It is a bad practice to keep the starter button depressed when the oil is so stiff that the engine will only turn slowly.

This may happen in exceptionally cold weather, and when the electrical energy of the battery has been dissipated to the effective minimum: this condition will only develop through abnormal use of the lights when the engine is stationary, or by inadvertently leaving the ignition switch on. Under these conditions it is desirable to start the engine by hand.

An intelligent use of the starter, as above described, will greatly prolong the life of the battery.

When the car has been left standing all day it may be found that the starter has to be operated for some time before the engine fires. This may be due to the petrol level in the carburettor float chamber having become rather low due to evaporation.

The hand primer on petrol pump may be used under such circumstances to conserve the electrical energy of the battery.

“Warming Up.” In cold weather the engine should be allowed to run not too slowly for a few minutes to warm up the oil, and on no account should the engine be raced up from dead cold at any time. It is a decided advantage to warm up the engine as quickly as possible in cold weather, as this minimises cylinder wear. A thermostat fitted which greatly reduces the warming-up period, and it should be adjusted as described. A good warming-up speed is about 600-700 r.p.m.

Starting the Car. When the car and engine speeds are not relatively proportionate to the gear ratio, the clutch slips until these speeds become in due proportion, then slip ceases and the drive is passed directly through the clutch to the gear box.

Clutch slip always occurs when starting away from rest because there is a minimum speed at which the engine can develop its power, and one purpose of the friction type clutch is to allow the flow of power by slipping of the surfaces until the car speed is sufficiently increased for a direct clutch drive to occur.

To obtain a minimum of clutch wear, however, always start away in first gear unless facing down hill, in which case, second or third gear may be engaged. If the driver engages a higher gear in order to save a gear change, the clutch will have to be slipped unduly, resulting in unnecessary wear. It should be remembered that the higher gear requires a higher car speed before a direct clutch drive can be obtained, and therefore a longer period of slip.

GENERAL UPKEEP.

Gear Changing. The synchro-mesh gearbox provides a synchronised easy gear change for all conditions excepting changing down into First gear with the car in motion. This particular gear change is seldom required, and changes into First or Reverse are mostly made when the car is at rest. Thus 95 per cent. of the gear changes are made easily with the synchro-mesh gearbox.

When changing into a synchronised gear the movement should be slow and deliberate. Do Not Hurry.

Upon its first movement the change speed lever will encounter a slight resistance from the synchronising cones. The continuance of a steady pressure will synchronise the gears and the resistance will be overcome as the driving dogs slide silently into engagement.

The change speed lever must always be pushed right home to secure full engagement.

Using the Brakes. Both foot and hand apply four-wheel brakes which are of the self-energising type, and, being very powerful, require only a small effort gradually to slow down the car.

The brakes do not require to be applied harshly except in emergency, as this only causes undue tyre wear and discomfort to passengers. The hand brake will be found of real assistance when negotiating long hills and can be applied to control the car speed without fear of overheating.

To stop the car apply the brakes gently, and when the speed has fallen to about 10 m.p.h. declutch, place the change speed lever in "Neutral" and reclutch. This will leave the engine idling when the car has stopped.
GENERAL UPKEEP.

Cooling System. In frosty weather some steps must be taken to prevent the cooling water freezing, as water when frozen expands and causes a great bursting pressure with considerable risk of cracked cylinders or radiator and consequent leaks.

If the garage is not heated, the water may be drained, but it is usually more convenient to use an anti-freezing mixture in the cooling system.

Glycerine is a cheap and reliable form, and 25 per cent. by volume of glycerine in the cooling water will give effective protection. Glycerine does not evaporate and will last the winter through. The total cooling system capacity on the S.S. I. is 32 pints, therefore, 8 pints of water may be drawn away and replaced by 8 pints of radiator glycerine.

On the S.S. II. the total cooling system capacity is 22 pints, therefore sufficient water may be drawn away and replaced by 5 pints of radiator glycerine.

Thermostat Adjustment. A thermostat is fitted in the top water pipe and the temperature control is shown in Fig. 5. The direction of rotation is shown by arrows for increase or decrease of temperature.

We suggest that the control should be set fully increased for winter running and two or three graduations back in summer. During exceptionally hot weather the thermostat valve may be turned “out-of-action” by setting the control at maximum decrease.

When refilling the radiator after it has been emptied or allowed to run very low, the valve should be fully opened by turning the control to maximum decrease, but this is not necessary when simply “topping up” the radiator.

New Engines. When the car is new the engine may seem to be somewhat lacking in power due to the bearings being a very accurate fit. This will continue for the first 200 or 300 miles, during which time the engine will become gradually “run-in” (with proper use). The power will then gradually improve as the car is used for the first 1,000 miles.

It is inadvisable to drive a new car fast, or to run the engine at high speed in the low gears. The good and lasting bearing surfaces obtainable by careful running-in are well worth the patience required to drive the car only at moderate speed for the first 500 miles.

We have found the use of an upper cylinder lubricant to be of advantage, particularly in new engines, and recommend the use of such a lubricant until the engine is thoroughly “run-in.” The lubricant should be mixed with the petrol in the proportions given on the container, and it may be used with advantage throughout the “life” of the car.

Fig. 5. Thermostat Adjustment

Fig. 6. Using the Jack at the front

The jack may be put under the centre of the front axle bed for lifting both front wheels off the ground, but if a front tyre is flat put the jack under the web provided near to the axle.

Fig. 7. Showing Jack in correct position at rear
GENERAL UPKEEP.

LUBRICATION.

This is one of the most important subjects in connection with the upkeep of a car, and careful attention to the following instructions will be amply repaid by the results obtained.

Engine. The working parts of the engine are lubricated by oil contained in the sump, drawn through filters by the gear type pump and delivered under pressure to the crankshaft journals, crankpins and camshaft bearings.

The spray from these bearings is ample for efficient lubrication of the pistons, tappets, valve gear and timing chain. Suitable oil return worms are embodied at the front and rear ends of the crankshaft, which effectively prevent oil leaking along the shaft.

The correct oil level in the sump is indicated by a mark on the dipstick, and it is advisable to examine this every 200 miles and replenish up to the top mark. The regular addition of oil not only maintains the correct level, but tends to keep up the quality of the lubricant, although gradual deterioration takes place until it becomes advisable after 2,000 miles to drain the sump and refill with fresh oil. The oil will drain more freely if the engine is first run for a short time to warm up.

The pump body is provided with a large filter which surrounds the oil pump, and this should be cleaned in petrol and allowed to dry each time the sump is drained. It is advisable to remove the sump every 10,000 miles and thoroughly clean out with petrol. Dry off with a smooth rag, taking care not to let any portions of the rag remain, and leave for a quarter of an hour whilst the remaining film evaporates before replacing the sump.

Do not attempt to clean out the sump with paraffin or petrol unless the sump is previously removed, as any small quantities remaining may cause damage to the working parts.

Special flushing oils are obtainable for the purpose of washing out the engine sump before refilling with fresh oil. This type of oil has very poor lubricating qualities, but does help to clean out the sump and cannot do any damage such as may be caused if paraffin were used, and the cost of the flushing oil is similar to that of paraffin.

The flushing oil may be used without removing the sump.

How it Functions.

1. Dirty oil from crankcase enters filter under pressure.
2. Dirty oil forced into the tubular passages of the cloth bag expands them, and then filters through over the entire surface of the cloth, the dirt being left on the inside.
3. Clean oil passes through cylindrical perforated container, used to support the cloth bag against excessive strain.
4. Clean oil enters tank.
5. Clean oil returns to crankcase.

The S.S. II. oil cleaner is a different shape but works on the same principle.

An oil cleaner is mounted on the dash and consists of a folded cloth bag rolled up and fitted inside a metal casing. Oil from the pressure side of the pump is able to pass through the cleaner and then back into the sump. In this way, 10 to 20 per cent. of the engine oil is continually being cleaned of the most minute particles until after about 10,000 miles running, the cleaner becomes choked and then the whole unit should be replaced to ensure continued oil cleaning.

First 500 Miles. During the running-in period a certain amount of foreign matter is likely to collect in the oil. We therefore recommend that the oil be drained and completely renewed at the end of this period. This note also refers to the gearbox and rear axle. In the case of the engine, it is well worth while to remove the sump and thoroughly clean out.

Ignition Distributor. The distributor spindle is provided with an oil cup, which should be given attention with the oilcan every 1,000 miles.

If the distributor cam appears dry it should be smeared slightly with vaseline.

Every 5,000 miles withdraw the moulded rotating arm from the top of the spindle and add a few drops of thin machine oil. Do not remove the screw exposed at this point, and drop the oil on top of it. The oil then passes through a clearance to lubricate the automatic timing control.

At the same time, place a single drop of oil on the pivot on which the contact breaker arm works.

Dynamo and Starter. As the bearings of the dynamo are packed with grease before leaving the works, they will require little attention, excepting as described under the mileage and maintenance instructions.
GENERAL UPKEEP.

After a considerable mileage, the dynamo should be removed for cleaning, adjustment and repacking the bearings with grease. This should be done preferably by the nearest Lucas Service Depot.

If, for any reason, the pinion on the starter motor does not engage with the flywheel teeth, examine the screwed sleeve on the armature spindle to see that it is free from dirt, if necessary wash over with paraffin. Occasionally give it a few drops of machine oil.

The starter is fitted with special bearings which will require no lubrication.

Water Pump. Ordinary grease dissolves in hot water and is thus able to escape into the cooling system if too much is forced into the water pump grease nipple. This may eventually result in a clogged radiator. Don’t give more than two or three strokes of the grease gun every 500 miles.

Gearbox. The correct oil only should be used to fill up the gearbox as the use of very thick oils or grease will spoil the operation of gear changing.

Fig. 9. Gear Box (showing dipstick).

To fill up, remove the filler plug, using the tube spanner provided. The dip stick extends below the plug. To check the oil level, wipe the stick and then insert, resting the bottom of the plug on the gearbox boss “A” as shown in illustration No. 9. Access to this filler is described on page 10.

To fill up, remove the filler plug, which is accessible through the transmission arch. The dip stick extends below the plug. To check the oil level, wipe the stick and then insert, resting the bottom of the plug on the gearbox boss “A” as shown in illustration No. 9. Access to gearbox is described on page 10.

When draining the oil, it is advantageous first to run the engine to warm up.

Rear Axle Lubricant. Access to rear axle is described on page 10. As the type of oil used in rear axle is rather thick, it will be found easier to replenish after a run when the oil is warm and in a more fluid condition. It will facilitate pouring if the fresh oil is first warmed up by placing the container in hot water. Congealed oil may require clearing away from the level orifice before proceeding with the filling. Fill up to the level of the plug boss.

Rear Axle. In very cold weather the rear axle may become noisy if the oil is too thick, due to the crown wheel forming a cavity in the oil which is insufficiently fluid to run back. The remedy is to drain away some of the thick oil and add a little engine oil of the same brand. This should not be necessary if the recommended lubricant has been used.

The rear wheel hub bearings are lubricated by gun, nipples being exposed when the wheel is removed.

Propeller Shaft Universal Joints. These revolve at high speeds and it is necessary to use special non-separating greases to ensure adequate lubrication.

The lubrication of the universal joints is most conveniently carried out by a service station, but if the owner desires personally to attend to this item of lubrication, an additional grease gun will be required.

Front Axle. Nipples are provided for the lubrication of the swivel pin bearings.

The hub bearings are lubricated by means of the grease gun, the nipples on each hub being exposed when the wheel is removed.

Steering. The oil gun is used to lubricate the steering box, and the grease gun the steering ball joints. The latter should be given regular attention, as the duty of these joints is high. For the steering box use only the recommended oil.

Do not remove the steering box cover plate for the purpose of filling with oil. The cover plate locates the trunnion which may become disengaged if the plate is removed.

Brake Cross Shaft, etc. The plates which carry the brake cross shaft should receive occasional attention with the oil gun.

Road Springs. The spring blades should not be allowed to get rusty, as this will prevent the correct working of the springs. The easiest procedure is first to clean the springs and then paint with engine oil or a special penetrating oil which may be obtained for the purpose.

It is the areas around the tips of the blades which most require the lubricant, as it is at these points that one blade presses upon the next. The blade clips should also be oiled.

Controls, etc. There are several small control joints which should be given occasional attention with the oil gun.

Lubrication of the “remote control” gear lever and selector mechanism is effected by means of two nipples on top of the aluminium casing. A small quantity of grease should be applied occasionally by means of the gun.

Oil Guns. We supply one oil gun in the tool kit, but the owner is advised to obtain an additional gun, for use as a grease gun. This will facilitate chassis lubrication.
GENERAL UPKEEP.

However, the gun supplied may be used for grease or for oil as required. The oil gun may be used instead of the oil can for ready lubrication of the brake and clutch connecting joints.

BRAKE CABLES AND CONDUITS.

To assure free efficient brake action, it is essential that cables be kept well lubricated, particularly where they are enclosed by the conduit.

The only satisfactory method of lubricating that part of the cable normally covered by the conduit, is by using a Bendix grease gun, which is specially designed for the purpose, and ensures adequate lubrication of the cable and conduit, maintaining free action of the cable and flexibility of the conduit. The local Service Station may be able to do this work for you, but in any case the lubrication of the cables should be carried out as follows:—

1. Remove brake drums.
2. Clean all dirt from exposed part of cables and conduit covers.
3. If conduit covers are rusty or clogged up with dirt, spray with penetrating oil, and allow to soak as long as possible.
4. Remove joint pins connecting cables to cross-shaft levers, and slide conduits out of the abutments, on chassis frame.
5. With Bendix grease gun, force grease into each conduit, from chassis frame end, until grease begins to appear at brake end of conduit. Take care that no grease remains inside brake or this may get on to the linings.
6. Wipe off any grease which has been forced into brake, replace drum and conduits.

The above lubrication of cables, if properly carried out with the correct type of grease, should normally last at least 10,000 miles.

Make sure brake shoes slide freely on the backing plates. If not, apply special graphite grease behind pivot nuts, where they bear on backing plate, and also behind spacer-pin washers where they contact with the shoes. Take care that grease does not get on to linings.

IF A BENDIX GREASE GUN IS NOT AVAILABLE, PROCEED AS FOLLOWS:—

First clean the exposed portions of the cable between the brake cross shafts and casings, then release the casing connections at the frame and brake drum cover, and slide the casing along towards the cross shaft. Cover with grease the portion of the cable now exposed before finally replacing the casing in correct position.

To release the cables, remove the pins connecting the cables to the cross shaft levers, the casing can then be pulled out of the cup at each spring bracket, and the cable passed through the slot provided. This method is not so effective as the use of special grease gun, and attention will be required at least every 5,000 miles.

RECOMMENDED LUBRICANTS.

| Component | Wakefield "Castrol" | Vacuum "MobilOil" | "Shell"
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine—Winter—November—to March Summer—April to—October</td>
<td>CW</td>
<td>A</td>
<td>Double</td>
</tr>
<tr>
<td>Gearbox</td>
<td>XL</td>
<td>BB</td>
<td>Triple</td>
</tr>
<tr>
<td>Steering Box and Oil Gun</td>
<td>Swanshot ST</td>
<td>CW</td>
<td>Triple</td>
</tr>
<tr>
<td>Rear Axle</td>
<td>D</td>
<td>C</td>
<td>Shell Gear Oil</td>
</tr>
<tr>
<td>Wheel Hubs, Front Axle Swivels, Steering Joints, Front Spring Eyes, Water Pump, Fan and Dynamo (Grease Gun)</td>
<td>Castrol "Heavy"</td>
<td>Mobilgrease No. 4</td>
<td>R.B. Grease</td>
</tr>
<tr>
<td>Road Spring Blades and all parts affected by rust</td>
<td>Castrol Penetrating Oil</td>
<td>Voco Penetrating Oil</td>
<td>Shell Penetrating Oil</td>
</tr>
<tr>
<td>Propeller Shaft Universal Joints (Non-Separating Grease)</td>
<td>"Unijoynt" Grease</td>
<td>Mobilgrease No. 5</td>
<td>R.B. Grease</td>
</tr>
<tr>
<td>or Hardy Spicer Non-Separator Grease</td>
<td>"Oiltit"</td>
<td>Gargoyle Velocite Oil D</td>
<td>Shell Household Oil</td>
</tr>
<tr>
<td>Brake Cables</td>
<td>Castrol</td>
<td>Gargoyle Upper Cylinder Lubricant</td>
<td>Shell Upper Cylinder Lubricant</td>
</tr>
</tbody>
</table>

Upper Cylinder Lubrication. We recommend the use of an upper cylinder lubricant until the engine is thoroughly "run-in." This lubricant is suitable for mixing with the petrol and is thus drawn into the combustion chambers through the carburetter. It is a valuable lubricant for use in cold weather.
GENERAL UPKEEP.

CARE OF THE TYRES.

There are a number of points in the care of the tyres which, if attended to, will prolong the life and prevent premature failure. These points are listed below and careful attention to them will be well repaid.

1. Maintain the correct inflation pressure by weekly tests with the “Schrader” gauge. The maintenance of correct tyre pressure is a large factor in tyre life.

 Tyres lose their pressure due to diffusion, even though there is no porosity or leakage due to a puncture or faulty valve. The loss varies from 1 to 3 lbs. per sq. in. per week and must be made up if the tyre is to give proper service.

2. Do not drive in tram lines, which apart from danger of skidding, may cut deeply into the loaded tyre.

3. Examine the tyres occasionally for flints or other road matter which may have become embedded in the tread. If the car is driven where tacks or short nails may be picked up, these also may be found buried in the tread. If these are left in, they may eventually work through the cover and puncture the tube. Fill up any larger holes with a suitable compound.

4. Oil should not be allowed to get on the tyres. If any should accidentally do so, clean off by using petrol sparingly.

5. The impact which tyres can withstand is limited, and it is inadvisable to drive at high speeds over rough roads.

6. The car is provided with powerful brakes, and it should be remembered that most of the forces of retardation are applied through the tyres. Fierce application of the brakes should not regularly be indulged in, as this places the tyres under severe stress.

7. Do not drive over sharp edged curbs or “bump” them with the side of the tyre, as this is liable to fracture the cotton tyre casing, and in the latter case upset the front wheel alignment, or even bend the wheel “out of truth.”

8. If the front wheels are not properly aligned, there will be a tendency to wear the front wheel tyres unduly. The front wheels are set with a slight “toe-in” of 1", and should this at any time be upset, it can be restored by adjustment of the steering track rod, although if the misalignment is due to a bent steering lever, this should first of all be re-set or replaced.

 “Toe-in” is the amount by which the front wheels are inclined from parallel, and is measured at the wheel rims. To take this measurement, set the steering in the “straight ahead” position and measure the distance between the two front rims at a height above the ground equal to that of the wheel hubs. Take this measurement both in front of, and behind the axle bed. The former measurement should be ½" less than the latter.

9. When cuts reach the casing it is always economical to have a vulcanised repair carried out by a competent operator.

CORRECT TYRE PRESSURES.

<table>
<thead>
<tr>
<th>MODEL</th>
<th>Inflation Pressure (lbs. per sq. in.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>Rear</td>
</tr>
<tr>
<td>S.S. I</td>
<td>25</td>
</tr>
<tr>
<td>S.S. II</td>
<td>27</td>
</tr>
</tbody>
</table>

A reduction of 2 lbs. per square inch is permissible in the front tyres at any time, and in the rear tyres when the rear seats are unoccupied.

WHY TYRE RESULTS VARY.

Scientific investigation of the actual effect of some of the major factors have recently been made, and the results are as follows:—

Speed. Car owners vary greatly in the speed at which they habitually drive. The rate of tread wear at 45 m.p.h. is double that at 35 m.p.h.

Acceleration. During wheel slippage caused by rapid acceleration, excessive tread wear takes place due to the abrasion of the tyre against the road surface.

Braking. Some owners “drive on the brakes.” It is established that where this practice is adopted, and especially if stops are frequent, the rate of tyre wear increases considerably.

The rapid improvement in car performance during the past few years has brought these particular factors into prominence, because in the three respects the modern car is so vastly superior to the car of 1924 or 1925 on which low pressure tyres were first fitted.
GENERAL UPKEEP.

FITTING AND REMOVAL INSTRUCTIONS FOR WIRED TYPE TYRES ON WELL BASED RIMS

Inextensible wires are incorporated in the edges of wired type tyres. Therefore, do not attempt to stretch the wire edges of the tyre cover over the rim edge.

Force is entirely unnecessary and may be dangerous, as it merely tends to damage the cover edges and serves no helpful purpose.

Fitting or removing will be quite easy, if the wire edges are carefully adjusted into the rim base; if it is not found to be easy, the operation is not being correctly performed.

To Remove Tyre. Remove all valve parts, and push both cover edges into the base of rim at the part diametrically opposite the valve, then lever the cover edges near the valve over the rim edge.

To Fit Tyre. Push one edge of the cover over the edge of the rim. It will go quite easily if the part first put on is pushed right down into the rim base.

Very slightly inflate the inner tube—do not distend it—place it in the cover, with the valve through the hole in the rim. (Take care that the valve, which is fitted in the side of the tube, is on the correct side of the rim.)

Fit the second edge of the cover, commencing at a point diametrically opposite the valve, and pushing the edge down into the base of the rim.

Small levers may be gently used to ease the last few inches over the rim edge. Be careful not to nip the tube.

Whilst inflating, see that the edges of the cover are seated evenly round the rim: check by the line on the cover.

Fig. 11. You cannot pull the cover edge at “A” over the rim edge until the cover edge at “B” is pushed off the rim shoulder “C” down into the well “D.” Then the cover edge at “A” comes over the rim easily. Remember the cover edges are inextensible—force will only damage the cover and cannot stretch the edge.

GENERAL UPKEEP.

RUNNING ADJUSTMENTS.

Various adjustments are necessary from time to time in order to keep the mechanism in efficient running order. The speedometer reading should be taken every 500 miles, and compared with the corresponding figures in the mileage and maintenance chart; the necessary adjustments can then be completed.

Brakes. Bendix Duo Servo Brakes are fitted to all four wheels, and all four are operated both by hand and foot.

The efficient maintenance of the brakes is so important that the owner should make himself fully conversant with the operation and adjustment of these parts.

One pair of brake shoes is shown in Illustration No. 15. The two shoes are anchored together by an adjustable turnbuckle, but the anchor pin actually supports the shoes and transmits the braking forces. The shoes are operated by a floating lever inside the drum connected to the actuating cable. This lever expands either the primary or secondary shoe, according to the direction of drum rotation. Therefore, when the brakes are in action, only one shoe is in contact with the anchor pin and thus the brakes are self-energised by the cumulative action of the two shoes. The same action takes place in reverse rotation, hence the name, Duo-Servo.

The brake shoes are adjusted to correct clearance from the drum, by the turnbuckle which is geared to the adjusting nut for the sake of accessibility. See Illustration No. 12.

As the brake linings wear, the pedal pad will approach nearer to the floorboard when the brakes are applied. It is high time that adjustments should be made when the pad is almost touching the floorboards when fully depressed. If the brakes are not then adjusted, it may be impossible in an emergency fully to apply them, due to the floorboard preventing further pedal travel.

The adjustment of Bendix Brakes is effected at the brake itself, and must not be carried out by tightening the operating cables, pedal or hand brake.

Adjustment to take up wear. Normal wear can periodically be taken up by means of the Shoe Adjusters. To tighten brakes, turn shoe adjuster in a clockwise direction, until a slight brake drag is felt when turning wheel by hand in a forward direction. Then turn adjuster in opposite direction until wheel is just free. It will be necessary to use the jack and deal with each wheel in turn.

Balancing the Brakes. When the brakes are out of balance, there is a tendency for the car to “pull” to the same side as the brakes which are doing the most work.

To check this, first test the tyre pressures and then drive the car on a quiet road at about 25 m.p.h. and apply the brakes hard. The “tightest” brakes will cause their wheels to leave a mark on the road, provided that the tyre treads are equally worn. The brakes can then be adjusted accordingly.

After the brakes are balanced, it should be possible to apply them hard, yet without any deviation of the car to one side or the other. Remember to keep a sharp lookout behind before applying the brakes. It is particularly important that the front brakes should be exactly balanced, so that when they are applied hard the steering is not affected.

The front and rear brakes should work equally and this may also be checked by applying the brakes for some time and then testing the heat of the drums. The cooler drums are doing less work than the hot drums and when properly adjusted the drums on both axles will be of equal heat.

If one or more drums get hot when running without applying the brakes it is a sign that those shoes are too closely adjusted.
GENERAL UPKEEP.

After 5,000 miles. Every 5,000 miles a check and adjustment should be carried out as follows:

1. Jack up all four wheels.
2. Detach the four operating cables from their respective levers on cross shaft.
3. Make sure that cables are free in their conduits, cross shaft works freely, and that when brakes are "off" brake pedal and operating levers return back against their stops.
4. (S.S.I. only.) Centralise shoes in drums. To do this, slack off locknut and turn eccentric adjuster in direction in which wheel revolves when car is moving forward, until a slight brake-drag is felt. Then slack off adjustment sightly until wheel is just free. Tighten locknut.
5. Expand shoes fully in drums by screwing up the shoe-adjusters.
6. Adjust cable lengths. Cables should be adjusted just tight enough, that, while there is no slack, the joint pins can just be inserted through the yoke-ends and cross shaft levers.
7. Adjust and equalise brakes. To do this, unscrew shoe adjusters until each wheel is just free, taking care to slack off all brakes equally. If the brakes are not quite balanced, adjust them on the road as previously described.

Fig. 12. Front Axle and Brake Details.

Shock Absorber Adjustment. The Andre friction type shock absorbers have been chosen in preference to the hydraulic type, because the damping characteristics are more suitable for the type of springing used on S.S. models, and also because of the advantages obtainable by the simple adjustment provided to suit varying conditions of travel.

Adjustment is desirable before commencing a long distance journey, when it will be advisable to tighten the adjusting nuts, thus increasing the resistance and preparing the shock absorbers for higher speeds likely to be obtained on long distance travel.

For the average town work a lesser resistance is required to obtain maximum comfort, the adjustment required varying according to road conditions.

The rear S.S. II. shock absorbers are accessible through detachable plates on the floor of the trunk.

Fig. 13. Brake Adjustment.

Clutch Adjustment. A single dry plate clutch is fitted in which a central friction-lined steel plate is gripped between the flywheel and presser plate by the action of helical springs. This allows the drive to be transmitted from the flywheel to the gearbox primary shaft on which the clutch plate is mounted.

Three toggles are incorporated with the presser plate and when the clutch pedal is depressed these toggles lift the presser plate away from the clutch plate and so release the drive between the engine and gearbox.

This type of clutch is particularly sweet in action and takes up the drive in a smooth manner.

The clutch is correctly set before leaving the works and it will be some considerable time before it requires readjustment. Eventually the clutch linings will wear until the initial clearance is all taken up and it will then be necessary to reset the clearance. See Illustration No. 16.

When there is a clearance at the toggle plate there is a corresponding multiplied free movement of the pedal pad and the indication that adjustment is required is given when the free pedal movement is reduced to about 1 1/2". It is then necessary to remove the transmission arch attached to the floorboards, and the clutch cover plate, which will leave the clutch inspection hole uncovered. See Fig. 17.

The 1 1/2" clearance required at the toggle plate can be set with a gauge, but a better method is to set it from the clutch shaft lever itself. Simply adjust the clearance until there is a backlash or free movement of about 1 1/2" measured at the pedal pad.

Caution. Do not disturb the pedal adjustment shown in Fig. 17, which is for setting the relative positions of the clutch pedal and clutch control levers. This adjustment is correctly set before the car leaves the Works.
GENERAL UPKEEP.

Fig. 14.
Brake and Shock Absorber Adjustment.
(A more accessible Oil Filler Plug is provided at the rear).

Fig. 15.
S.S.I.
Brake Shoes. The Shoes are similar on the S.S. I.
(The brake adjusters are not quite correct in the lower illustration, but are shown correctly on Fig. 12).

Fig. 16.
Clutch.

Fig. 17.
Clutch Adjustment.
GENERAL UPKEEP.

Sparking Plugs. It is important that all plugs should be set to the same clearance of 0.020 inches. This can be tested with the gauge supplied in the tool kit.

The engine will not run smoothly at slow speeds, or start easily if the gaps vary too much. It is advisable to remove, clean and set the points of the sparking plugs about every 5,000 miles, and when replacing in the cylinder head, make sure that the copper-asbestos washers are in good condition and screw the plugs firmly into position.

The normal efficient life of a sparking plug is 10,000 miles, although they will function for longer periods.

When replacing, we recommend that Champion No. 16 be fitted for S.S. I., and Champion Type J.5½ on S.S. II.

Valve Clearances. A clearance between the valve stem and the tappet screw is necessary to ensure correct closing of the valves and efficient running of the engine.

The correct clearance is 0.004 inch for both inlet and exhaust valves. A gauge provided in the tool kit for the purpose of setting this clearance in the manner described below.

First run the engine for a few minutes until it becomes warm, but not too hot to handle. Then remove the tappet cover and turn the engine with the starting handle for half a revolution after the valve to be adjusted has closed. Slacken the lock nut and adjust the tappet screw until the gauge is a close sliding fit between the valve stem and the tappet screw. Now tighten the lock nut and re-check, as tightening the lock nut will occasionally alter the clearance.

If a tappet becomes noisy, it can be silenced by adjusting the clearance to the correct amount. Do not set the valve clearances too small or the engine will not maintain good tune.

Fig. 18. S.S. I.

Interior of Tappet Chamber.

The parts shown above are similar on both models. The petrol hand primer is visible directly behind the glass bowl.

Fig. 19.

Tappet Adjustment.

GENERAL UPKEEP.

Ignition. An Instruction Booklet is issued by the manufacturers and supplied with the car, and will give any information required about the distributor or coil. The more important points, however, are re-stated here.

All electrical connections must be securely made, kept dry and clean. The plug connections are those most liable to come loose.

When washing the car, care should be taken that water does not remain on the coil or sparking plugs, as its presence on either may cause short-circuiting and corrosion of contact points and terminals. It is also advisable to remove the distributor cover and wipe out any water that may have collected inside.

The distributor contact breaker points require cleaning and adjusting occasionally. A small spanner and gauge are provided for the purpose and a thin abrasive stone may be obtained for cleaning the points, but only a few strokes with this should be necessary. When re-setting the gap, the gauge secured to the spanner should just fit the gap at its maximum opening, which can be found by slowly turning the engine with the starting handle.

If one cylinder alone misfires, this will probably be due to a fault in the wiring connections to that cylinder, which should be carefully examined to see that there is no breakage. If a wire should be found to be broken, a temporary repair can be made by cutting through the insulating material at the break and peeling each broken end of the wire for about 1/2 inch, then twisting them into each other and finally binding with insulating tape. The repaired portion should be held clear of the metal parts to prevent short-circuiting.

The firing order is 1, 5, 3, 6, 2, 4 on the S.S. I., and 1, 3, 4, 2 on the S.S. II., and the distributor is shown marked in Figs. 34 and 35, corresponding to the cylinder numbers to which the high tension cables should go. The cylinder numbers are counted in sequence, No. 1 being the cylinder furthest from the radiator.
R.A.G. Carburetters are fitted to all models. Type M. is fitted to the S.S.I. Type T is fitted to the S.S.II.

Fig. 20.
The position of the slow running or idling jet is indicated above, but the jet itself is removed.

Fig. 21.
Protector Cap.

This Valve regulates Fuel supply. Unscrew to increase.

Idling Jet Assembly Pull it out—push it back.

Unscrew Jet here if necessary.

Fig. 22.
To remove the jets—an old nail will do it.

Fig. 23.

Fig. 24.

Fig. 25.

Fig. 26.
CARBURATION
TUNING THE CARBURETTOR.

1. SET THE IDLING SPEED REGULATOR.

Set the idling speed regulator. The idling speed regulator consists of a movable plate through which holes are drilled. These holes coincide with similar holes in the carburettor body when the plate is in the fully open position. This regulator provides a small variable air leak by means of which the tick-over speed of the engine may be altered. When used in the fully open position, naturally a larger amount of fuel from the slow running jet will be required. The normal position is about half open, but the actual position can readily be found when tuning the carburettor, with the regulator nearly closed.

THE THROTTLE MUST BE FULLY CLOSED WHEN TUNING.

When replacing Idler Assembly, see this Flat engages with this lug, and press firmly.

Fig. 27.

JETS AND CHOKEs

<table>
<thead>
<tr>
<th>Choke</th>
<th>Main Jet</th>
<th>Bleed</th>
<th>Power Jet</th>
<th>Bleed</th>
</tr>
</thead>
<tbody>
<tr>
<td>S.S.1</td>
<td>20 m/m</td>
<td>76</td>
<td>2</td>
<td>185</td>
</tr>
<tr>
<td>S.S.1</td>
<td>16 m/m</td>
<td>76</td>
<td>2</td>
<td>185</td>
</tr>
<tr>
<td>S.S.1</td>
<td>24 m/m</td>
<td>40</td>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>S.S.1</td>
<td>26 m/m</td>
<td>56</td>
<td>2</td>
<td>120</td>
</tr>
</tbody>
</table>

The above settings have been selected after careful test for economy, maximum power and acceleration. Slight modifications which will enhance the value of one feature at the expense of another may be made. These, however, should not be undertaken without advice from the manufacturers of the carburettor.

When refitting after decarbonisation see that there is a slight loss of action before the throttle responds to the foot or hand control, also that the striking angles of the action are square, as shown hereunder.

Fig. 28.

CARBURATION
YOUR ENGINE IN THE MORNING

The R.A.G. for starting purposes is just as efficient as any other carburettor. No more and no less. No carburettor can ensure easy starting. Avoid excessive use of the strangler first thing in the morning.

When you finished with your engine last night, the oil was hot and thin, and it ran down the cylinder walls into the sump, leaving the pistons, piston rings, and cylinder walls dry. Now, the pistons when cold are considerably smaller than the cylinder bores, in order that they may have room to expand when hot, and the piston rings are provided with an appreciable gap for the same reason, so that when your engine is cold there is quite a considerable leak through this gap, exactly, in effect, as if the walls of the cylinders were deeply scored throughout their length. And, of course, you know that an engine with scored cylinders is practically useless.

Under these conditions when the pistons travel downward on the suction stroke, cold air and a number of fine globules of water (the result of condensation) rush into the space above them. On this downward stroke each piston should be pulling a proper firing charge into the cylinder. Actually the proportion of the charge is weakened by the addition of this leak from the crank-case. The strangler, which intensifies the suction on the jet and pulls in extra petrol, is intended to compensate for this. But—again this wretched leak—when the charge is compressed a considerable portion of it is forced down the leak, and as a result your lubricating oil is diluted with neat petrol, which is fatal. If you will take things easily—slowly swinging the engine before switching on, a certain amount of lubricating oil will be picked up by the rings from the lower part of the cylinder bore, and will form a partial and temporary seal, helping matters quite a lot. Obviously, the older your engine, the more the above applies.

Leave your Carburettor alone. It was carefully tested before the car left the works, and unless the idling adjustment has been altered, or the control mechanism been displaced, it can only be affected by stopped jets (very unusual) or a choked filter.

Owners of S.S. Cars are, by special arrangement, invited to consult Messrs. R.A.G., Ltd., 121, Victoria Street, London, S.W. 1 (Telephone : Victoria 1375-6), in case of any difficulty or doubt regarding the performance of their engines. They are also cordially invited to avail themselves of the trained technical staff at the R.A.G. Service Station, 187, High Street, Tooting, S.W. 17. Telephone : Streatham 6747.

Smooth watch-like tick-over may be obtained when tuning the carburettor in the garage, but the result may be stoppages in traffic when the engine is under load. Therefore, set the idling to suit road conditions. A short run will show what is needed.
GENERAL UPKEEP.

Petrol Pump. The petrol pump is operated by an eccentric on the camshaft. The sectional diagram shown in Illustration No. 29 will serve to indicate the method of operation. The petrol flows to a sediment chamber before passing through the non-return inlet valve. The pump chamber contains a non-return outlet valve and a diaphragm operated by a link mechanism from the rocker arm, which is in contact with the eccentric cam. The rocker arm constantly oscillates, and if the pump chamber is full of petrol, causing the diaphragm to be depressed, the rocker arm works freely and does not operate the diaphragm. The spring behind the diaphragm causes a constant pressure of fuel to the carburettor float chamber and thus the stroke of the diaphragm is automatically governed to meet the requirements of the carburettor.

The rocker arm itself is spring loaded for the purpose of keeping contact with the cam and so preventing noise.

A hand primer is fitted to the pump, so that it is unnecessary to turn the engine either by hand or by the starter if the tank has run dry and the pump becomes empty. A few strokes on the hand primer will soon fill the carburettor float chamber.

If the pump fails to supply petrol to the carburettor, attend to the following points:

- Remove the sediment chamber cover, and clean the gauze.
- Make certain that the cork washer lies flat on its seat and makes an airtight joint. See that the valve plugs are tight, and if necessary replace the plug washer.
- Examine the pipes and connections, and if the pump still fails to function remove the plugs and valves.
- Wash in petrol, and replace any damaged or warped valve.
- Examine the valve seats to make certain that they are in good condition and replace the valve with its polished side downwards, then carefully replace the valve spring and plug. If petrol leaks at the diaphragm, tighten the screws alternately to ensure a good joint.
- If the petrol does not flow from the pump to the carburettor, examine the small filter fitted inside the petrol pipe union to the float chamber.

Caution. Do not dismantle the pump further than described above, because it cannot be properly re-assembled without the use of a special jig.

If the pump should fail to work after attending to the above points, it should be replaced and the old pump sent to the nearest A.C. Service Station.

Driving Belt Adjustment. If the dynamo and fan belt should become slack, it can be adjusted by slackening the clamp bolt and turning the dynamo in its cradle before retightening in position.

"Trafficators." If, at any time, the arm fails to light up when in operation, examine the bulb. To remove the bulb, switch on the "Trafficator" and then, whilst supporting the arm in a horizontal position, move the switch to the "off" position.

Now move aside the small trigger projecting from the underside of the arm and the cap of bulb holder will spring open. Fit a new bulb in place of the one which has burnt out and refit the cap.

Bulbs fitted: No. T.126F. 6-watt festoon type.

See Fig. 48.

Fig. 29.

Fuel Pump—Section.
GENERAL UPKEEP.

Instructions regarding the Lucas “Alta” and “Allette” Horns. Each electric horn, before being passed out of the Works, is adjusted to give its best performance and will give long periods of service without attention. No adjustment is required in service.

If the horn becomes uncertain in its action, giving only a choking sound, or does not vibrate, it does not follow that the horn has broken down. First ascertain that the trouble is not due to some outside source, e.g., a discharged battery, a loose connection or short circuit in the wiring of the horn, or in some cases a blown fuse.

It is possible that the performance of a horn may be upset by the horn becoming loose on its mounting.

This can be ascertained by removing the horn from its mounting and testing its note.

If the note is still unsatisfactory, do not attempt to dismantle the horn, but return it to a Lucas Service Depot for examination.

Decarbonizing and Valve Grinding. During the course of running, carbon forms on the walls of the combustion chambers and after several thousands of miles this causes a metallic noise in the engine termed “pinking,” which is evident when pulling hard up hill or when accelerating from low speed in top gear. It is then necessary to remove the cylinder head, scrape clean the combustion chambers and grind-in the valves.

Fig. 30. S.S. I. Correct order for tightening the Cylinder Head Nuts.

Many owners would prefer to have these operations carried out by a competent mechanic, but for those desiring to do this work themselves, the method is outlined below.

As it is more comfortable to work with the metal parts in a warm condition, run the engine for a while before proceeding with the work.

Now drain the water from the cooling system. If it is winter and an anti-freezing solution is being used, the owner may desire to preserve the cooling water for further use. If, however, the old water is discarded, do not forget to renew the anti-freezing element.

Whilst the water is draining, the ignition leads may be removed, and when sufficiently drained the top water connection can be released.

It is a good plan to number the ignition leads by tying on small labels so as to facilitate refitting.

Caution. Do not insert any instrument, such as a screwdriver, between the cylinder head and cylinder face for the purpose of freeing the head, as this would damage the gasket. Projecting lips are provided at the front and rear of the head for the purpose of removal.

If any water should find its way into the bore, wipe it away immediately.

If the gasket joint does not separate freely when lifting the head, a blunt knife may be carefully inserted and the joint made free.

It will now be necessary to remove the exhaust manifold by uncoupling the exhaust pipe and removing the manifold nuts, but first remove the petrol pipe connection to the carburettor and the control connections.

Having removed the cylinder head, gasket and exhaust branch, as described above, next remove the valves. Care should be taken not to mix the valves, and to ensure this, they are numbered accordingly.

Referring to Illustration 32, it will be seen that the valve spring compressing tool is shaped to fit over the spring and raise it so that the cup may be withdrawn.

Caution. Be careful not to drop the spring cups into the crankcase, and to avoid this, it is desirable to remove the tappet blocks and fill up the space with clean rag. This will catch the cups if they are accidentally dropped, and removal of the tappet blocks facilitates removal of the valves.

Before starting to clean off the carbon from the piston crowns first turn the crankshaft over by hand until any two pistons are at top dead centre, then fill the remaining cylinder bores with clean rag to prevent any chips of carbon falling into the cylinders.

Scrape the piston crowns and the carboned portions of the cylinder face, using an old screwdriver or similar blunt tool in a “chiselling” manner. Scrape clean the valve ports, but be careful not to scratch the valve seats, and when completed, wipe clean with a paraffin damped rag. Then give the starting handle a partial turn and treat two more pistons in the same manner until all pistons are clean.

Do not polish the ports with emery cloth or other abrasive, for the particles may get into the cylinder bore and do serious harm. If compressed air is available, it is advisable to blow through the inlet pipe to clear out any particles of carbon which may have fallen through the valve ports.
The cylinder head should now be scraped, but first remove the sparking plugs, and when this operation is complete wipe the chambers clean. The sparking plugs should then be cleaned and the points reset before replacing in the cylinder head.

Grinding the Valves. In order that the valves shall all be gas tight, it is necessary for the bevelled surfaces of the valve and cylinder seat to make perfect contact when fitted together. This is achieved by grinding the two surfaces together, but each valve must be ground into the correct seat as indicated by the numbers stamped on the valves.

A small tin of special grinding paste may be obtained, containing both fine and coarse grades.

The grinding process consists in coating the bevelled face of the valve with grinding paste and refitting the valve in its guide.

A small spring may with advantage be fitted under the valve head for the purpose of lifting the valve from its seating during the grinding operation. Use a large screw-

driver to turn the valve to and fro. After each movement, allow the spring to lift the valve, then press down into another position before giving the next turn. This will keep the grinding even.

Continue these operations until the surfaces assume an even matt appearance, then wipe away all traces of paste from the valve seats, as any paste finding its way into the cylinder bores or valve guides would do serious harm.

If the valve seats are in fairly good condition it will only be necessary to use the fine paste, but if this is insufficient to produce a clean surface a little coarse paste must be used. When the valves are badly pitted, they should either be renewed or skimmed up in a lathe. Do not attempt to grind them in, or you will remove an undue amount of metal from the cylinder seats. It should be remembered that the steel valves are much harder than the cast iron cylinder seats with which they engage.

The valves may now be assembled and when all the spring cups are safely in position, remove the rag which was previously placed to prevent the cups falling into the sump. Replace the tappet blocks and reset the valve clearances.

The camshaft can be turned until it is in the best position for removal or refitting the tappet blocks by turning the engine with the starting handle.

Before replacing the gasket on the cylinder it is advisable to smear it with clean grease or a wet portion of white soap, which will prevent the gasket sticking and allow easy removal when the head is next removed. If the gasket has been damaged, it is advisable to procure a new one, as the damaged gasket is likely to leak. Take care to fit the gasket so that the oil filling hole is in correct position.
GENERAL UPKEEP.

When replacing the cylinder head nuts, it is most important to tighten them gradually in turn, in the sequence shown in Illustrations Nos. 30 and 31. This will produce an even pressure on the gasket and prevent undue strain in the cylinder head casting. If a new gasket has been fitted, it will be additionally necessary to run the engine until warm, go over the nuts again and give them a further tightening.

Replacing Distributor. When the cylinder head is removed for decarbonizing the distributor vertical driving shaft may be accidentally lifted out of engagement with the oil pump at the bottom end. Before attempting to replace the distributor, make certain that the lower end of the shaft engages with the pump by pressing on to the top end whilst someone turns the engine with the starting handle.

To engage the distributor spindle with the top half of the driving shaft, remove the distributor cover and turn the spindle until it engages with the shaft. There is only one position in which the parts can be engaged and thus the timing is not disturbed.

Caution. Don't use force in refitting the vertical bracket and distributor. When the shafts are correctly engaged the bracket will touch the cylinder head flange, the nuts may then be tightened up.

Loose Bolts or Nuts. All the vital nuts are locked in position by a split pin or by an additional lock nut. It is, however, desirable that the car should be examined every 5,000 miles, so that if any nut is found to be loose it may be tightened.

The wheel nuts can periodically be checked by the owner himself, but the general examination of the chassis is a mechanic's job.

GENERAL DESCRIPTION OF CHASSIS.
GENERAL DESCRIPTION OF CHASSIS.

Fig. 37. Engine and Gear Box Section

Illustration by courtesy of the Standard Car Review

Fig. 38. S.S. I. Engine Details, View Inside Crankcase.

Fig. 39. S.S. II. Engine Details, View Inside Crankcase.
Shaded portions show where cables are braided together in a protective sheathing. Colours indicate coloured sleevings on ends of leads.

NOTE—S.S. 1. Open 4-Seater Model. The panel arrangement is slightly different from that shown above, but the wiring is the same.

Fig. 40.

WIRING DIAGRAMS
GENERAL DESCRIPTION OF CHASSIS.

Engine. The side valve engine has a detachable cylinder head and is built in unit construction with the gearbox, the whole unit being insulated from the frame by a rubber mounting for the purpose of absorbing vibration.

Crankcase and cylinders are cast in one piece and made of a special wear-resisting cast iron. The cylinder bores of Standard engines are notable for accuracy and fine finish.

Pistons are made of Aluminium alloy and each has three compression rings in the head, the lower one also acting as an oil scraper ring. The skirts fit closely on the pressure faces, preventing piston slap, but have a clearance at right angles to these faces, so allowing the skirt to accommodate itself to the cylinder bore when the engine warms up.

The light alloy connecting rods are of "I" section in the shank and have bronze bushes pressed into the little ends. The big end bearings are made of bronze and are lined with white metal cast directly on the inner bearing surfaces.

Tubular case hardened steel gudgeon pins link the pistons and connecting rods together and have pastilles fitted in the ends to provide end location.

The alloy steel crankshaft is supported in seven main bearings on the S.S. I., and in three on the S.S. II., the whole being designed in rigid proportion. Clutch thrust is taken by the rear bearing, which is provided with an ample surface for the purpose.

Case hardened harmonic cams are formed integrally with the camshaft and operate tappets, the flat cast iron faces of which are chilled to produce a hard wearing surface. The tappets are located in detachable guide blocks. The camshaft is mounted in four bearings, three on the S.S. II., and embodies a helical gear drive to the spur gear type oil pump mounted in the sump.

The camshaft and distributor are driven by roller chain provided with automatic chain tensioner, and the dynamo is mounted on a cradle; this allows the driving belt to be adjusted to correct tension.

Heat-resisting Silico-chrome steel is used for the valves, which are provided with renewable guides made of special wear-resisting iron.

The oil sump is of aluminium (pressed steel on S.S. II.), and embodies a separate anti-splash guard.

An aluminium housing encloses the flywheel and clutch and also forms the connection between the gearbox and engine.

Cooling System. Water circulation on all models is provided by a centrifugal pump, and the cooling is assisted by a six-blade fan in the case of the S.S. I. (four-blade on S.S. II.) mounted on an extension of the water pump shaft, which is driven by a belt from the crankshaft pulley. This belt also drives the dynamo, which is mounted at the side of the cylinder block.

Exhaust System. Exhaust gases are led away at the front of the engine near to the radiator, thus avoiding heat transmission to the interior of the car.

Although the silencer is particularly effective, it absorbs only a minimum of energy.

Carburettor. After exhaustive bench and road tests, we have found the R.A.G. Carburettor to be most suitable to this engine. The exhaust pipe is cast separately and provides a suitable hot spot for the induction pipe.
GENERAL DESCRIPTION OF CHASSIS.

A Lucas 12-volt earth return (or one wire) lighting and starting set is fitted, consisting of dynamo, automatic cut-out, starter, distributor and coil, switches, lamps, ammeter, screen wiper, horn, trafficators, fuses and accumulator.

In the "earth return" or "single pole" system the positive battery terminal is connected to the starter switch and the negative terminal to the frame. A single cable leads the current from the starter switch to the starter, which is "earthed" to the frame. In like manner, a single wire leads current from the "live" terminal of the starter switch through the ammeter and switches to the various points, which are also "earthed" to the frame. Thus when current flows along a wire it returns through the metal portions of the chassis to complete the circuit.

As the frame parts are not insulated, one cable should be disconnected from the battery terminal before removing any electrical unit, otherwise there is risk of a serious "short."

Empire Electric Clock. The hands can be set to time by turning the milled headed knob provided at the back of the clock.

As long as the battery remains in a charged condition the clock will continue to wind about once every four minutes, but in the event of the battery becoming discharged or very weak, a fuse fitted through an aperture in the back of the case will come into operation and cut the clock out of circuit, but it will never happen so long as the condition of the battery remains normal.

If a new fuse is required it is desirable when ordering to state:

Type of Car.
Model.
Year.

The clock is sealed before leaving the Factory and guaranteed for 12 months provided the seals are not broken.

Petrol Gauge. An electrical gauge fitted on the instrument panel indicates the amount of fuel in the tank and is brought into operation when the ignition is switched on. A rheostat is fitted in the top of the petrol tank and connected by an arm to the float which indicates the fuel level by setting the rheostat resistance in a corresponding manner. Thus each level has a different electrical resistance which is suitably indicated on the gauge.
GENERAL DESCRIPTION OF CHASSIS.

ELECTRICAL SYSTEM.

The petrol tank is mounted at the rear of the frame and a fuel pump mounted on the engine draws petrol from the rear tank and supplies it to the carburettor at constant pressure.

The tank capacity is 12 gallons on the S.S. I., and 8 gallons on the S.S. II.

The dash unit, mounted on the instrument panel, consists of two cores spaced at 90 degrees and wound so that they will have like polarity in the faces exposed to the armature which is integral with the pointer. The face or dial has a scale graduated in degrees between "Empty" and "Full."

The tank unit, assembled in the petrol tank, consists of a housing enclosing a rheostat or resistance unit with a moving arm which is actuated through a pair of gears by a float arm assembly immersed in the fuel of the tank. All steel parts of the tank unit are Cadmium plated, the rheostat or resistance coil is Chromel wire wound on a Celenor core and the remaining parts are brass, thus making the entire assembly completely corrosion proof.

The outer terminal of the dash unit marked "Battery +" is connected by a wire to the ignition switch so that the petrol gauge is operated only when the ignition is turned "On." The centre terminal marked "Tank" is connected by a single wire to the terminal on the Tank Unit. The return circuit is accomplished through a ground," as both the dash unit and tank unit are "grounded" in their respective locations.

When the petrol tank is empty, the float is at its lowest position and the rheostat in the tank unit is completely grounded. All of the current through the dash unit then flows through the coil at the "Empty" side of the indicator and the pointer is then moved to the "Empty" position.

As the tank is filled with fuel, the float rises. This moves the brush in the rheostat, and resistance is introduced into the circuit which grounds the "Full" coil in the dash unit, so that part of the current flows through this coil and the pointer is attracted away from the "Empty" to a position of balance between the two coils, its point of rest depending on the level of the fuel. The movement of the pointer is reversed, of course, as the fuel level goes down.

Owing to the design of the AC Petrol Gauge, current consumption is very low, between 1/6th to 1/10th ampere. As far as car operation is concerned, this amount of current is negligible and can be entirely disregarded.

The operation of this Gauge does not depend upon the strength of the magnetic field, therefore fluctuations in the battery voltage will not cause any error in the gauge reading.

The indicator or pointer remains steady at all times, due to a carefully calibrated friction damper incorporated in the tank unit to prevent moderate surging affecting the reading of the dash instrument. Also the dash unit has an inertia damper to prevent vibration of the pointer on rough roads.

Electric Starter. The starter pinion automatically engages with teeth on the flywheel when operated. When the engine fires the flywheel over-runs the starter pinion and automatically throws it out of engagement.

A spring loaded shock absorber is incorporated for the purpose of reducing the initial shock of pinion engagement.

The spindle is extended at the front of the starter and has a square end so that should the pinion ever jam it can easily be freed by turning the shaft with a spanner.

Fig. 47. Combined Cut-out and Regulator Unit.

Regulator and Fuse Unit type R.F.
A Regulator and cut-out cover.
B Fuse cover.
C Auxiliary accessories fuse.
D Main dynamo fuse.
E Spare fuses.
F Supply terminals for auxiliary accessories.
G Earthing terminals.

As the car speed increases to 20 m.p.h. the dynamo output rises to a value which is most suitable for the particular conditions of the battery, and it will remain constant at all speeds higher than this.
GENERAL DESCRIPTION OF CHASSIS.

ELECTRICAL SYSTEM.

The cut-out is operated by the dynamo voltage, and when due to increasing speed, the dynamo develops sufficient voltage to actuate the cut-out, the points make contact and so allow current to flow from the dynamo to the battery. When the engine slows down, the dynamo voltage falls below that of the battery and the reverse action takes place, i.e. the cut-out opens and thereby prevents the battery from discharging itself through the dynamo. Both the regulator and the cut-out are accurately set before leaving the Works, and do not need any adjustment; therefore the cover protecting them is sealed.

There are two fuses in this unit, which protect the circuits of the auxiliary accessories and also the main battery circuit. If all the accessories fail, or the dynamo ceases entirely to charge, inspect the fuse. If the fuse has blown, examine for faulty wiring and replace by one of the spare fuses provided. If the new fuse blows, the cause of the trouble must be found, and we advise that the equipment is examined by one of our Service Depots.

Never fit any fuse other than the standard Lucas fuse as originally fitted.

Battery. The battery forms a six cell single unit carried under the bonnet.

Lamps. An electrically operated dipping reflector is incorporated in the near-side lamp. The switch is conveniently mounted at the centre of the steering wheel, and when operated, causes the offside lamp to "go out" and the nearside lamp to "dip." The switch at the centre of the steering wheel gives either side and tail lamps or head, side and tail lamps, as required.

The dipper unit in the near side headlamp is protected by a fuse which is mounted alongside the unit. If the equipment fails, this fuse can be examined by removing the reflector unit. To remove the unit, first remove the lamp front, then take off the lockwasher. This will leave a screw head exposed. Remove this screw and turn the reflector unit in a clockwise direction to remove it.

There is also a switch connected to the brake pedal which operates the stop light, and on the S.S. I, a reversing light is operated on engaging reverse gear when the sidelamps are on.

"Trafficators." These are operated by a switch at the centre of the steering column. Movement of the switch to right or left raises the corresponding signal and at the same time lifts a cam fitted underneath the switch, so when the steering wheel is returned to the straight ahead position, it pulls back the switch to the "off" position and the signal falls. Further reference to these indicators on pages 38 and 91.

Fig. 48. Removal of bulb from "Trafficator" arm.

GENERAL DESCRIPTION OF CHASSIS.

HOW TO OBTAIN THE BEST SERVICE FROM THE ELECTRICAL SYSTEM.

Battery.

1. Once a month inspect the acid level in each of the cells, and if necessary add sufficient distilled water to bring the level to the top of the separators.
2. Keep the terminals tight and smeared liberally with vaseline to prevent corrosion.
3. Keep the tops of the cells clean and dry.
4. Never leave the battery in a discharged condition for any length of time.

Coil Ignition Equipment.

1. Keep distributor clean inside and out.
2. Test contact breaker gap (fully opened) occasionally with gauge provided on ignition spanner. Re-set if it varies appreciably from the gauge.
3. Add one or two drops of oil through oiler provided about every 1000 miles.
4. Smear cam lightly with vaseline every 3000 miles, or whenever it appears to be dry.
5. Every 3000 miles, remove moulded arm from top of distributor shaft and, without removing screw exposed to view, add one or two drops of oil to lubricate the automatic advance mechanism.
6. Replace high tension cables showing signs of perishing or cracking with 7 mm. rubber covered ignition cable.

Dynamo.

1. Keep brushgear and commutator clean. See that the brushes bear properly on the commutator. Replace badly worn brushes.
2. S.S. I. Model only. Add a few drops of oil through lubricator at drive end of machine every 1000 miles.
S.S. II. Model only. Give greaser at drive end of machine one turn every 500 miles. Repack with a good quality high melting point grease when empty.
3. Periodically, say, when the engine is being decarbonised, move aside flap marked "GREASE" at commutator end of machine and add a very small quantity of high melting point grease.
4. When car is taken down for a general overhaul, have dynamo dismantled for cleaning, adjustment and repacking bearings with grease. This should be done preferably by a Service Depot.
GENERAL DESCRIPTION OF CHASSIS.

Lamps.
1. Keep reflectors clean. Finger marks can be removed with a soft dry cloth without injury to the highly polished surface. Do not use metal polish.
2. Use only the correct Lucas replacement bulbs. See table.
3. Focus head lamps after fitting new bulbs. The bulb holder can be moved backwards and forwards when the clamping clip at the back of the reflector is slackened.
4. Keep lamps in proper alignment.

Particulars of Bulbs.

<table>
<thead>
<tr>
<th>Lamp</th>
<th>Bulb</th>
<th>Volts</th>
<th>Watts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Head Lamps</td>
<td>B.A.S. No. 4S</td>
<td>12</td>
<td>36</td>
</tr>
<tr>
<td>Side, Tail and Panel Lamps</td>
<td>B.A.S. No. 10S</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Ignition Warning Lamp</td>
<td>No. 252 M.E.S.</td>
<td>2.5</td>
<td>.5</td>
</tr>
<tr>
<td>"Trafficators"</td>
<td>No. T126F</td>
<td>12</td>
<td>6</td>
</tr>
<tr>
<td>Stop, Reverse and Tail Light</td>
<td>B.A.S. 35</td>
<td>12</td>
<td>24</td>
</tr>
</tbody>
</table>

TRANSMISSION.

Clutch. The single dry plate clutch is toggle operated, the toggles having a ratio which reduces the end thrust on the clutch throw-out ball race and crankshaft bearings when declutching, to only a fraction of the total clutch spring load.

Power is transmitted from the clutch driven plate to the splined centre through a rubber loaded driver for the purpose of ensuring a smooth engagement.

The presser plate is loaded by six helical springs, so designed that no adjustment is required.

Gearbox. The gearbox is built in unit with the engine and has silent second and third gears in the four-speed box. Synchronised engagement is provided for second, third, and top gears. The constant wheels which transmit motion from the clutch primary shaft to the layshaft have double helical teeth. Similar teeth are also used on the silent intermediate gears which are also in constant mesh and ensure silent transmission.

The double helical gear consists of two lines of gear teeth cut to the same helical angle, but of opposite spiral. Each gear is in one solid piece, and end thrusts consequent on the use of helical teeth are balanced in the structure of the gear, thus no thrusts are transmitted to the shaft bearings.

Direct drive or top gear is obtained by coupling the mainshaft and primary shaft together by means of a special dog clutch which incorporates a synchronising cone. This cone engages firstly and brings the speeds equal, ready for direct engagement of the dogs. Thus the first part of the change speed lever movement produces synchronisation, and the latter part engages the direct dog drive. When the dog clutch is moved in the opposite direction it synchronises and engages third speed in the same manner.

The dog clutch for second speed engagement is incorporated in the mainshaft first speed wheel. When moved forward by the change speed lever it synchronises and engages the second speed dogs; and when moved backwards the first speed gear teeth slide into mesh in the conventional manner. A locking plunger is incorporated which prevents a too forcible engagement of the second speed cone.

Reverse is obtained by sliding an idler wheel into mesh with both first speed wheels, when they are locked in the neutral position. The selector lock is incorporated in the gearbox lid, and prevents simultaneous engagement of two speeds at one time.

Fig. 49. View of Universal Joint, dismantled. M—Gearbox mainshaft.
GENERAL DESCRIPTION OF CHASSIS.

All the gear wheels on the layshaft revolve as one, but the mainshaft second and third speed wheels run free on bushes, when not engaged in driving. There is no gate, but the gear selector forks are designed to limit the lever motion in a suitable manner.

The primary shaft is supported by a roller bearing in the bearing case and by a roller spigot bearing in the crankshaft. The mainshaft has a roller bearing in the bearing case and a plain bush spigot bearing in the primary shaft. Plain bushes carry the layshaft and reverse wheel which are supported by fixed shafts passing through their hollow centres.

Propeller Shaft. This is an open type shaft of ample diameter and has mechanical universal joints at each end. Endways motion is allowed for by a sliding spline connection at the gearbox end. Both joints are oil tight and are provided with metal water and grit excluding covers.

Spline Engagement. The splines must be engaged with the arrows opposite to each other, so that the propeller shaft will transmit uniform motion.

A single universal joint does not transmit uniform motion when the driving and driven shafts are out of line, but when two joints are used and set in correct relation one to the other, the errors of one are corrected by the errors of the other and uniform motion is then transmitted. Hence the importance of re-engaging the splines correctly when they have been taken apart.

Rear Axle. The rear axle is of the semi-floating type in which the car weight is transmitted from the springs through the steel casing to the single taper roller bearings in each hub housing and from thence to the road wheels.

The four-pinion differential is contained in a forged steel balance box to which the spiral bevel crown wheel is bolted, the whole differential assembly being mounted between two taper roller bearings in the housing.

A roller bearing supports the spiral bevel pinion at the inner end, and a combined radial and thrust bearing at the outer end, the whole being assembled together with the differential in a malleable cast iron housing bolted to the axle case.

The bearings fitted in the hubs are capable of taking both radial loads and end thrusts.

Rear axle shafts are secured to the hubs by taper, key and nut. The inner ends are splined into the differential wheels and butted together for the purpose of transmitting wheel thrusts to the bearings. This is necessary because a taper roller bearing can only take thrust in one direction.

The object of the differential is equally to divide the motive effort between the two axle shafts, yet still allow the shafts to turn at unequal speeds when "cornering."
GENERAL DESCRIPTION OF CHASSIS.

FURTHER CHASSIS PARTS.

Front Axle. The front axle beam is of "H" Section between the springs for the purpose of carrying the weight, but the overhanging ends of the beam are of round section for the purpose of withstand the torsional stresses due to braking in addition to those due to weight.

Stub axles are of the "Reversed Elliott" type, in which the jaw fits over the end boss of the axle beam and is secured by the swivel pin held in position by a cotter. This provides a robust construction without undue weight. The car weight is transmitted to each stub axle through a hardened steel washer in contact with a bronze bush.

Taper roller bearings are fitted to the stub axles and carry the hubs, brake drums and road wheels, and dust excluding grease retaining washers are fitted at the inner ends of the hub to protect these bearings.

The steering arms are secured to the stubs by taper, key and nut, this being a strong type of fixing.

Wheels. Rudge Whitworth or Dunlop wire wheels with well-base rims which provide easy tyre fitting.

Steering. The gear is of the cam and lever type, in which a worm type cam actuates a lever engaging with it. The lever is formed in one piece with a shaft to which the steering arm is secured by taper serrations, and the whole is mounted in two widely spread bearings giving a firm support.

A trunnion located in the lever end forms the engaging means between the cam and lever, and sets itself automatically to the helix angle of the cam. The trunnion end has four semi-spherical hardened steel inserts set in it, two on each side, which make the actual contact with the cam and due to their spherical location, are self-accommodating to the cam surface.

The cam is secured to the end of the steering column shaft and mounted between two ball bearings of the cup and cone type.

A feature of this steering gear is the freedom with which it works due to the low-friction contact of the hardened steel inserts with the steel cam.

The steering arm is coupled to the stub axle arms by a spring loaded tube. The track rod tube is also spring loaded to the ball pins at both ends, and the system in general consists of a low friction gear operating a linkage of the "Ackermann" type in which a small turning circle and effortless steering are obtained.

A felt bush is fitted at the top end of the steering column and locates the tubular column shaft. The lighting hand control at the centre of the steering wheel operates a tubular extension which passes down the centre of the column to operate a pair of gear sectors at the bottom end. This provides the connection between the hand control and switchbox mounted above the steering box.

Horn and "Trafficator" wires pass down the centre of the control. The steering wheel is keyed to the top end of the column shaft.
GENERAL DESCRIPTION OF CHASSIS.

Frame. The steel frame is of stout pressed channel section, the side members each being provided with wide flanges, and is braced by a X-type cross member at the centre; the four ends of the cross are extended within the frame side members and embrace the spring brackets. Exceptionally rigid front and rear cross members are provided in addition to two tubular members.

The frame is upswept at the front, and passes under the axle at the rear, thus obtaining a low centre of gravity, giving exceptional road holding performance, and at the same time lending itself to unique body design. This construction is very strong to resist torsion as well as bending, and provides a rigid support for the body.

Chassis Suspension. Semi-elliptic laminated springs are fitted at both front and rear, the rear springs being slung under the axle, and the front springs on top.

Each spring has a single shackle pin at the forward end and shackle plates with two shackle pins at the rear end to allow for the motion of the spring.

"Silentbloc" bushes are fitted in all the spring eyes, except the front spring front eyes, which have bronze bushes, and are lubricated by grease gun. No lubrication is necessary or desirable for the "Silentbloc," as they contain rubber.

Each "Silentbloc" is formed of two steel tubes, one within the other, the annular space between being filled with tough rubber under great radial pressure. This construction enables them to carry heavy loads without distortion, and yet remain relatively free to twist. All the twist is by elastic motion in the rubber, there being no slip between the rubber and the steel tubes.

Both front and rear springs are of special design, the result of extensive experiment and provide comfortable riding under varying speed and road conditions.

No suspension can be perfect without the addition of a correct amount of damping which prevents the accumulation of spring energy as succeeding shocks are met. The shock absorbers fitted have been carefully chosen to suit the springs and are mounted to the outer ends of the axles, thus reducing "roll" on corners and generally contributing to good road holding qualities.

CORRECT ADJUSTMENTS.

If the car is taken to an S.S. Agent, the mechanics who will do the work will be familiar with the adjustments necessary during a major overhaul, but in case this is not convenient, we give below a brief list of the correct adjustments for the benefit of any mechanic to whom the car is strange.

<table>
<thead>
<tr>
<th>Component</th>
<th>Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Crankshaft end play in rear bearing</td>
<td>0.006"</td>
</tr>
<tr>
<td>Connecting rod end play at big end</td>
<td>0.004"</td>
</tr>
<tr>
<td>Camshaft end play</td>
<td>0.006"</td>
</tr>
<tr>
<td>Gearbox mainshaft end play</td>
<td>0.006"</td>
</tr>
</tbody>
</table>

Steering Ball Joints. Screw up solid and then back to the first slot, excepting the joint on the axle end of the steering drag link, which should be screwed back one complete turn.

Front Hubs. Jack up the axle and remove road wheels. Screw up the stub nut until tight and then screw back for two or three slots until there is the least perceptible shake.
Rear Hubs. These bearings are adjustable by shims to just take out the "slack" in the bearings, and are fitted between the drum cover and the bearing housing.

The correct backlash in the hub bearings is 0.006" and it is only necessary to adjust one bearing as the backlash becomes automatically the same in both bearings.

S.S.1. Rear Axle Spiral Bevel Pinion. The spiral bevel pinion and crown wheel are correctly meshed before the car leaves the Works, and the adjustment is unlikely to require further attention for some considerable time. Eventually, excessive backlash may develop due to wear, although it is unlikely to make the gears noisy. We recommend a backlash of 0.005" between the pinion and crown wheel teeth. The backlash may be adjusted as follows, referring to Illustration No. 56A.

1. Clean the pinion housing on the surfaces adjacent to the cover "P" which fits over the hole.

2. Remove the cover "P" and the pin "N" and withdraw locking plate "L."

3. The two castellated adjusters are screwed with a right-hand thread and are located one on each side of the bearing "B."

 Slacken the inner adjuster by inserting a lever into the hole and turning the adjuster in a clockwise direction looking from front of car.

4. Now turn the outer adjuster "H1" in a clockwise direction until the locking plate "L" can be inserted in the next castellation and then lock in position.

5. Finally, retighten the inner adjuster and lock in position by re-fitting the cover plate "P" which has the locking dowel "D" integral with it.
CORRECT ADJUSTMENTS.

S.S. II. Rear Axle Spiral Bevel Pinion. The backlash may be adjusted as follows, referring to Illustration No. 57.

1. Clean the piston housing "E" on the surfaces adjacent to the cover "D" which fits over the hole "C".
2. Remove the cover "D" and the pin "F" and withdraw locking plate "G".
3. The two castellated adjusting screws are located one on each side of the bearing "A".
 Slacken the inner adjuster by inserting a lever into the hole "C" and turning the adjuster in a clockwise direction looking in direction of arrow.
4. Now turn the outer adjuster "B" in a clockwise direction until the locking plate "G" can be inserted in the next castellation and then lock in position.
5. Finally, retighten the inner adjuster and lock in position by re-fitting the cover plate "D" which has the locking dowel integral with it.

Brake Linings. The brake linings are of a hard moulded type which has exceptional wearing properties and they will not require replacing until a considerable mileage has been accomplished.

When re-lining does eventually become necessary, we strongly advise the owner to have fitted new shoes complete with linings, which can be obtained from the Service Department. These shoes have the correct lining properly fitted and ground to fine limits, ensuring efficient braking and long life.

An allowance is made for the value of the old shoes.

Valve Timing. When any part affecting the valve timing is removed, take particular note of the markings on the chain wheel teeth; if these are indistinct, scribe marks on the faces of the wheels before removing the timing chain. This will save the work of re-timing the engine when the parts are re-assembled, as they can simply be set to the marks.

If the marking operation has been neglected, the camshaft can be set to the timing diagram shown on page 4. It is only necessary to time one cylinder, as all the cams are integral with the shaft. The flywheel is 111.8 inches in diameter near to the starter teeth, therefore, 10 degrees is equivalent to 0.99 inches measured on the flywheel, and 50 degrees is equivalent to 4.39 inches.

When checking the valve timing, the tappets should be set to the correct clearance of 0.004 inches.

Ignition Timing. The ignition advance is mostly automatic and the distributor should be set to fire 14 degrees before top dead centre on the S.S. I., and 17 degrees before top dead centre on the S.S. II. These are the starting points, which may require slight alteration when tested on the road.

Turn the engine until No. 1 inlet valve closes and continue turning until No. 1 piston reaches top dead centre. This position is indicated by a mark on the flywheel, but if the clutch housing is in position this mark will not be visible, in which case remove the timing plug over No. 1 piston and insert a small diameter rod to indicate the piston position. Let the rod be about seven or eight inches long so that it will be long enough not to fall into the cylinder.

Then slacken the clamp bolt and turn the distributor body until the contact breaker points are just separating when the distributor arm is opposite No. 1 segment in the cover, then re-tighten the bolt.

CORRECT ADJUSTMENTS.

To obtain the correct firing point, turn the crankshaft in an anti-clockwise direction, viewed from the front of the engine, by pulling on the fan belt or applying a spanner to the starting-handle nut on the front end of the crankshaft, until the top of the rod has moved a quarter turn on S.S. I., a third turn on S.S. II., from the top dead centre position.

The terminal positions are clearly marked in Figs. 34 and 35. It will be seen that No. 1 cylinder is adjacent to the dash.

Propeller Shaft Assembly. If the propeller shaft has been removed, it is essential when re-assembling the front end splines to see that the arrows on the universal joint and propeller shaft end are in line. If these are not in line, it is possible that the propeller shaft will not transmit uniform motion.

Timing Cover. Whenever the timing cover is removed it should be replaced in the following manner, to ensure correct oil retention and quiet running.

First replace the timing cover with the securing screws just "holding," then place a drop of oil on the inside of crankshaft pulley and fit pulley on crank, but with the driving key removed. The pulley will not rotate freely if it rubs on the hole in the timing cover, in which case tap the sides of the cover until it is possible to "spin" the pulley, and then tighten the securing screws.

It is advisable to re-check for pulley freedom after tightening the screws, to make sure that the cover has not moved in the process. Finally, fit the pulley key and tighten up the crankshaft nut.

Fan Balance Weight (only fitted when required). If it should ever be necessary to remove the fan from the pulley, first mark the position of the semi-annular balance weight, which is secured by two of the four set pins, the weight can then be re-assembled in correct position.
POSSIBLE TROUBLES AND THEIR REMEDIES.

CERTAIN TROUBLES may occur in connection with motoring, and we give an analysis in the following pages which will help the owner to correct any fault which may arise.

If the fault cannot be corrected, the owner is strongly advised to take the car to the distributor or dealer from whom the car was purchased. If the car is on tour, it is advisable to take it to the nearest S.S. Agent.

It will probably be found that the Agent who is familiar with the car will quickly be able to rectify any trouble which may occur.

A list of Agents is given on pages 78 to 81.

LOCATION AND CORRECTION OF FAULTS.

Make sure of the cause of the trouble before attempting to make any adjustments. If in doubt, do nothing, but carefully—

ANALYSE THE FAULT.

Engine will not start.

1. Lack of Petrol. See that the tank contains petrol and lift the carburettor float spindle to see if the petrol is flowing to the carburettor when the crank is rotated or the hand primer operated.

 If the petrol pump is at fault, refer to page 38. Make sure that the petrol pipes and filters are not stopped up or air locked.

2. Sparking Plugs. These may be dirty, due to long use without cleaning, or the points may be burnt causing the gaps to be too wide. Remove, clean and re-set the points, as described on page 32. If there is no spark at the plug, it may be due to a disconnected or broken wire or a fault in the distributor or coil, in which case refer to the Lucas Coil Ignition Booklet.

3. Ignition Distributor. See that the contact breaker points are clean and in correct adjustment (page 33). See also that the contact breaker arm moves freely. If the spark is incorrectly timed, the distributor control lever may have slipped. Re-set the ignition as indicated on page 68.

4. General. If the starter does not turn the engine over quickly enough due to the accumulators being run down, use the starting handle.

 If the carburettor jet is stopped up, clean jet, taking care not to enlarge the hole. See that there is no air leak in the induction pipe which would cause the mixture to be weak. Use the correct grade of oil in the engine.

 A too heavy oil causes stickiness in the working parts, thus putting an overload on the starter.

Engine runs imperfectly.

Lacks Power. Make sure that the throttle opens fully when the accelerator is depressed. If black smoke comes from the exhaust the mixture is too rich, probably due to the choke not opening fully when the control is pushed in.

If the mixture is too weak, resulting in “spitting back” in the carburettor or explosions in the silencer, there may be a partial stoppage in the petrol system or dirt in the main jet.

The lack of power may be due to overheating caused by driving with a retarded spark or the distributor may have become incorrectly set.

Examine the water and oil levels and see that the oil pressure is correct.

The engine may lack power if the valve clearances are insufficient—these should be re-set, as instructed on page 32.

Examine the sparking plugs and do not fit the wrong type of plug. See page 32.

Test temperature of brake drums. If the drums get hot when the brakes are not applied, it is a sign that the shoes are binding.

Engine Fires Irregularly. If due to faulty sparking plugs, detect by short-circuiting each plug in turn, using a screwdriver or similar tool having an insulated handle. Let the metal tool first make contact with the cylinder metal and then bring it also into contact with the plug terminal. When a plug is found which when “shorted” does not affect the running of the engine, remove and clean this plug and see that the gaps are correctly set. An alternative method is to use a spark tester which shows the intensity of the spark by the intensity of light in the tester.
LOCATION AND CORRECTION OF FAULTS.

Examine the porcelain insulation for cracks. If a crack is discovered a new plug will be required.

Lack of compression in any one cylinder may cause uneven running and this may happen if a valve stem becomes sticky or if dirt under the valve seat prevents proper closing with possibly ultimate burning of the valve. The cylinder in which the compression is weak may be found by turning the engine by hand and testing each cylinder separately. If the above items are not at fault, the cause of low compression may be worn piston rings.

Water may reach the distributor or plug terminals when the car is being washed and so cause short-circuiting of the current. Examine the connections and remove the distributor cover to make certain there is no water inside.

Engine Knocks. This may be due to the combustion chambers having become carboned up, in which case the engine will require decarbonizing. Pre-ignition may be a cause when unsuitable plugs are fitted or when the ignition has become too far retarded, thus causing overheating. Knocking may also occur if the ignition has become too far advanced, or if the water has boiled away.

Engine Overheats. This may occur if there is insufficient oil in the engine or insufficient water in the radiator, or if the ignition has slipped and become too far retarded. It may also be caused by carbon deposit in the combustion chambers or a lime deposit in the radiator. In the latter case, clean out, as described on page 13. If hard water has been used in the cooling system, impurities will be deposited on the cooling surfaces and thus require cleaning as described.

Engine runs erratically. If by any chance the condenser in the distributor has broken down, the engine will show symptoms similar to both carburettor and ignition troubles. When the carburettor is found to be in order, it is well to examine the distributor points which will be dirty if the condenser is at fault. Clean the points and if they rapidly become dirty again on running, have the condenser examined. See page 32. Make sure that the contact breaker arm is not sticking. The engine will run erratically when the actual wire has broken inside the insulation. This is then a difficult matter to trace.

Engine stops after a few revs. May be due to faulty ignition or weak mixture. See 1 or 3, page 71. Also if the mixture is too rich, the engine may stop. If the level in the float chamber is too high due to the needle seating badly, tap lightly. A high petrol level may be caused by a punctured float, and in this case it will be necessary to empty it and have it re-soldered, taking care not to increase its weight.

LOCATION AND CORRECTION OF FAULTS.

Insufficient Oil Pressure. Check the oil level in the sump. If the oil has been in the engine for too great a mileage it should be renewed. If necessary, remove the engine oil sump and clean the suction filter, at the same time cleaning out the sump. If the above points are in order, the pressure relief valve may need re-setting or cleaning if dirt has got under the ball seat. To increase pressure release locknut on top of relief valve and tighten adjusting screw. After a great mileage the oil pressure will become low due to wear in the bearings, particularly the connecting rod big ends. The engine then requires a general overhaul to regain the correct oil pressure.

Starting Motor fails to Start Engine.

Turns Engine Slowly. The battery may be run down due to leaving the ignition switched on or leaving the car standing with the head lamps on.

The grade of oil in the sump may be too heavy. See page 23.

Will not move Engine. May be due to a broken connection between the starter and battery or to a bad contact. In this case, refer to the Lucas Electrical Instruction Booklet.

Will not Disengage. Starter spindle is extended at the front of the starter and has a square end, shown in Illustration No. 43, so that it may be turned with a spanner in a direction opposite to the normal rotation. This will draw the pinion out of mesh.

A loose cover is fitted over the square end of the spindle.

Dynamo does not Generate. See that the dynamo revolves. If this is in order, examine the fuse and refer to the Electrical Instruction Book.

Lamps burn out. When the brilliancy of the light increases with the speed of the car it is probably due to a bad connection between the battery and terminals or a bad earth connection on the frame. Examine the connections, clean, tighten, and smear with vaseline. When the bulbs show a cloudy appearance, they are damaged and should be replaced.

Clutch. If the clutch slips it is probably due to the wear on the friction surfaces which has taken up all the free travel. Re-adjust as described on page 29. If the clutch spins causing difficult gear changing, it is probably due to an excessive free pedal travel which prevents the clutch from being fully disengaged, in which case re-adjust.

Steering. Should the steering become imperfect, check the tyre pressures and see that the wheel nuts are tight. See that there is no undue shake in the hub bearings and inspect the steering joints for slackness. All this work should be done with the front axle jacked up. It is also advisable to examine the front spring to axle connecting bolts to see if these are properly tight. If necessary have the castor angle of the front axle and the toe-in of the wheels checked by our local agent.

The steering may be “heavy” if lubrication of front axle swivels steering joints and steering box has been neglected.

Brakes. If the car does not pull up quickly when desired, the brakes require adjustment, and if there is a tendency for the car to pull to one side when the brakes are applied, the brakes require balancing. See page 27.

Suspension. Should the springing become too hard, lubricate the spring blades and clips, as indicated on page 21. If the car “bounces” unduly, the shock absorbers require tightening. See page 7.
LOCATION AND CORRECTION OF FAULTS.

Exhaust Fumes. If exhaust fumes enter the car it may be due to a leaky exhaust gasket. Tighten the bolts and if necessary replace the gasket.

Petrol Gauge. Should the pointer not move when the ignition is switched on, there may be a break in the wire between dash unit and ignition switch. If the gauge shows "Full" under all conditions, there may be a break between dash unit and tank unit. Should the gauge show "Empty" under all conditions, the wires may be reversed on dash unit, or dash unit may not be "grounded." Alternatively, tank unit may not be "grounded." This calls for replacement of the unit involved. In general, service is by replacement of the inoperative unit. Do not attempt to lubricate either unit.

EXTRAS.

Ace wheel discs polished aluminium, S.S. I. ... £9. 7. 6. £1. 5. 0.

S.S. II. ... £7. 10. 0. £1. 5. 0.

If cellulose finish to match, per set extra ... £1. 5. 0.

Spot lamp, chromium plated ... £1. 5. 0. 7/6

Desmo Senior "Safebeam" Chromium Plated Fog Lamp

Junior ... £2. 17. 6.

Lucas Type F.T.37 ... £2. 10. 0.

Wiring and Fitting, 7/6 extra.

Interior Visors with Amber Safety Glass ... £1. 1. 0. 5/-

S.S. Fabric Brushing Polish in Black or colour ... 2/6

S.S. Cellulose Cleaner and Burnisher ... 2/6

Chrome Shine Large size ... 1/9

Small size ... 7d.

"Kyrac" for the Cooling System ... 2/6

(Postage extra)

State colour required when ordering any of the following:

Wheel Discs (cellulose finish).
Fabric Brushing Polish.

Customers who have not a credit account with us will facilitate expeditious execution of their orders if accompanied by remittance. Address orders to:

SPARES DEPARTMENT,
S.S. CARS LTD.,
FOLESFILD,
COVENTRY.

ACCESSORIES AND EQUIPMENT.

Proprietary equipment as fitted to S.S. Cars can either be obtained direct from the manufacturers, whose addresses are given below, or will be supplied by the Spares Department, S.S. Cars Ltd., at list prices current from time to time.

All Claims for replacement or alleged defective parts must be referred direct to the respective manufacturers to be dealt with under the terms of their guarantee.

Component.

Lighting, Ignition, and Starting Equipment ... Joseph Lucas, Ltd., Great King St., Birmingham.

Windscreen Wiper ... Joseph Lucas, Ltd., Great King St., Birmingham.

Trafficators ... Joseph Lucas, Ltd., Great King St., Birmingham.

Electric Horn ... Joseph Lucas, Ltd., Great King St., Birmingham.

Speedometer, Coupe and Saloon ... Open Four-seater

Service Station, 187, High Street, Tooting, London, S.W.17

Tyres ... Dunlop Rubber Co., Ltd., Fort Dunlop, Erdington, Birmingham.

Road Wheels ... Rudge Whitworth Ltd., Bearing Works, Reddings Lane, Sparkhill, Birmingham.

Dunlop Rim and Wheel Co., Ltd., Holbrook Lane, Coventry.

Brakes ... Bendix, Ltd., King's Road, Tysley, Birmingham.

Safety Glass ... Lancingay Safety Glass Ltd., Palace of Industry, Wembley.

Screen and Back Light Glass ... Triplex Safety Glass Co., Ltd., Farnham Road, Slough, Bucks.

S.S. I. Oil Pressure and Water Temperature Gauge ... S. Smith & Sons (M.A.), Ltd., Cricklewood Works, London, N.W.2.

Thermostat ... S. Smith & Sons (M.A.), Ltd., Cricklewood Works, London, N.W.2.

Clock ... S. Smith & Sons (M.A.), Ltd., Cricklewood Works, London, N.W.2.

Petrol Pump ... A.C. Sphinx Sparking Plug Co., Ltd., Bradford Street, Birmingham.

Petrol Gauge ... A.C. Sphinx Sparking Plug Co., Ltd., Bradford Street, Birmingham.

Oil Cleaner ... A.C. Sphinx Sparking Plug Co., Ltd., Bradford Street, Birmingham.

Proprietary articles which are considered to be defective returned to our works will be forwarded to the component manufacturer concerned. Should immediate replacement be required the parts will be charged for, but will be credited if the component manufacturer accepts responsibility under the terms of guarantee. Should responsibility not be accepted, the component manufacturer's reasons for non-supply under guarantee will be submitted.
SERVIE.

ADDRESS YOUR ENQUIRIES TO

SERVICE DEPOT

S.S. CARS LTD.

COVENTRY

Where your requirements will receive the most earnest consideration.

Your Car has a distinguishing No. stamped on a plate at off side of the Engine; this is known as the Car Commission No.

This should be quoted whenever Spares are ordered, together with the Engine No., stamped on off side of cylinder block and a description of the part required.

A list of S.S. Agents will be found on pages 78 to 81.

Should your car give trouble see the Agent. If you are on tour apply to the nearest S.S. Agent.

Should the owner obtain the instruction book without having first obtained a guarantee form, he should apply to the Agent, who will supply the necessary form. When this is obtained, fill in the bottom paragraph and send the whole document to the Guarantee Department as soon after purchase of car as possible.

COPY OF GUARANTEE.

On the sale or supply of all motor cars and goods by S.S. Cars Ltd. (called "the Company") on the carrying out of all repairs and work by them all guarantees, warranties or conditions (including any condition as to quality or fitness for any particular purpose) whether express, or implied by Statute, Common Law or otherwise, are excluded, and hereby expressly negatived.

In lieu of such express or implied conditions, warranties or guarantees the Company will give the following guarantee PROVIDED that the customer correctly fills up and signs the slip at the time this document is delivered this document with the attached slip so filled up and signed to the Company within seven days of the purchase of the customer of an S.S. Car or goods. On receipt of this document so completed and signed the Company will return the top portion hereof to the customer.

It must be clearly understood that if a customer fails to comply with this preliminary condition the Company will be under no liability whatsoever either upon the following guarantees or upon any express or implied condition, warranty or guarantee.

MANUFACTURERS' GUARANTEE.

In case of defect, breakage or breakdown of any motor car or goods supplied by the Company being discovered or occurring within SIX CALENDAR MONTHS from the date of sale, caused by defective workmanship or material (proved to the satisfaction of the Company) the defective part will be repaired or the Company will supply a new part in place thereof. Such period is free of charge a new part in place thereof. Such period is free of charge a new part to the customer except for any damage or loss arising through any breakdown, breakage or defect. The Company does not acknowledge any claim in respect of labour expenses including labour expended in dismantling or fitting arising from repairs, nor does it accept any responsibility for repairs or the fitting of replacement parts executed by Agents, or other repairers. The Company also will not be responsible for defects, breakages or breakdown caused by wear or tear, misuse or neglect. The judgment of the Company in all cases of claims shall be final and conclusive and the customer agrees to accept its decision on all questions as to defects and to the exchange of parts or parts. After the expiration of six months from the dispatch of notification of the Company's decision to the parts purchased by the customer, and the Company's parts will be delivered to the customer carriage forward. The Company accepts no responsibility for any goods which have been altered after leaving the Company's works. This guarantee shall be subject to the following conditions:

CONDITIONS.

1. This guarantee shall not be transferred to anyone unless the Company's consent in writing has first been obtained to such transfer.
2. The Company's guarantee shall not apply to any motor car or goods which have been purchased at any price other than the Company's current retail price at the time of sale.
3. Any motor car or goods alleged to be defective must be returned to the Guarantee Department of S.S. Cars Ltd., at Foleshill, Coventry, carriage paid, and clearly labelled with the sender's name and address, within ten days of discovery of alleged defect. A letter under separate cover must be sent at the same time to the Guarantee Department giving the following details:
 a. Commission Number of the car.
 b. Nature of the defect, breakage or breakdown which is alleged.
 c. A brief description of all circumstances which will facilitate a quick and satisfactory settlement.
 d. If there has been any correspondence or an invoice rendered the Company's reference number should be quoted.
4. Delivery of all goods supplied by the Company under this guarantee will be made at the Company's Works.
5. The term "Agent" where used is in a complimentary sense only and those persons or firms who are styled the Company's "Agents" are not authorised to advertise, incur any debts, transact any business, or incur any liabilities whatever on the Company's behalf, nor are they authorised to give any guarantee or warranty nor make any representations on the Company's part other than those contained in this document.

GUARANTEE AS TO REPAIRS AND OVERHAULS.

The Guarantee and Conditions set forth above cover, and are applicable to repairs executed by the Company with the exception, with the exception that the period of Guarantee is for three calendar months from the date of completion of repairs.

Cars which are sent for repair will be driven by the Company's employees and/or Agents at the risk and responsibility of the owners only. Repairs of cars are undertaken only on the assumption that the owners give the Company authority to drive the vehicles on their behalf.

This is to Certify that Car number: _______ has this day been registered as the property of _______ of _______ and is covered by the guarantee above set forth.

Dated _______ 77

For and on behalf of S.S. CARS, LTD.,

FOLESHELL, COVENTRY, ENGLAND.
S.S. DEALERS—Continued.

DEVONSHIRE:
P. Pike & Co., Ltd., 166 Union Street, Plymouth.
Perry's Zomba Garage, Torquay Road, Preston, Paignton.

HERTFORDSHIRE:
Stannard Motor Services, High Street, Barnet.

BEDFORDSHIRE:
Wilson Bros. & Humphreys, Ltd., 23 St. Mary's, Bedford.

CAMBRIDGESHIRE:
Crisswell's Garage, High Street, Newmarket.

SUFFOLK:
Mann Egerton & Co., Ltd., Majors Corner, Ipswich.

NORFOLK:
Mann Egerton & Co., Ltd., 5 Prince of Wales Road, Norwich.

NORTHAMPTONSHIRE:
Imperial Autocar Co., Market Square Garage, Northampton.
Reed's Garage, Ltd., Broadway, Peterborough.

BUCKINGHAMSHIRE:
Fullbrook & Co. (Slough), Ltd., Slough Motor Works, 40 High Street, Slough.

LEICESTERSHIRE:
H. A. Browett & Co., Ltd., 64-66 Granby Street, Leicester.

LINCOLNSHIRE:
Wests (Lincoln), Ltd., 115 High Street, Lincoln.
H. G. Betts, 397 Ashby Road, Scunthorpe.
R. C. Bellamy, Ltd., South St. Mary's Gate, Grimsby.

NOTTINGHAMSHIRE:
C. H. Truman & Co., Ltd., Mansfield Road, Nottingham.

WARWICKSHIRE:
P. J. Evans, Ltd., John Bright Street, Birmingham.
S. H. Newsome & Co., Ltd., Corporation Street, Coventry.
Leslie Matthews & Co., Ltd., 147 Bristol Street, Birmingham.

WORCESTERSHIRE:
Stour Valley Motor Co., Ltd., Hagley Road, Stourbridge.

STAFFORDSHIRE:
Attwood's Garage, Stafford Street, Wolverhampton.
Attwood's Garage, Stafford.

DERBYSHIRE:

YORKSHIRE:
Glovers, of Ripon, 1 Leeds Road South, Harrogate.
E. W. Hatfield, Ltd., 147-151 Norfolk Street, Sheffield.
Pointing's, Ltd., Albion House, Albion Street, Leeds.
Thornton Engineering Co., Ltd., Belle Vue Works, Manningham Lane, Bradford.
W. L. Thompson, Ltd., Anlaby Road, Hull.
Castlehouse Vasey & Co., Ltd., 26 Brook Street, Scarborough.
LANCASHIRE:
Henly's, Ltd., 1, 3 and 5 Peter Street, Deansgate, Manchester.
Loxham's Garages, Ltd., Corporation Street, Preston.
Parker's, Ltd., Bradshawgate, Bolton.
Alexander & Garner, Royal Exchange Arcade, Manchester.
R. Bamber & Co., Ltd., near Birkdale Station, Southport.
C. A. Britten & Co., 39-41 Renshaw Street, Liverpool.
Brown & Mallalieu, Ltd., Winter Gardens Showrooms, Blackpool.
Tom Mitchell, Drill Hall Motor Works, 50 King Street, Blackburn.
William Monk, Ltd., Oldham Road, Ashton-under-Lyne.
Newsham Motor Co., 27 Islington, Liverpool.

CHESHIRE:
Coventry Motors, 57 Argyle Street, Birkenhead.
Coventry Motors, Market Street, Hoylake, Wirral.
Drabble & Allen, Ltd., Victoria Road, Hale.

CUMBERLAND:
County Garage Co., Ltd., 14a Botchergate, Carlisle.

DURHAM:
Sherwood Bros., South End Garage, Grange Road, Darlington.

NORTHUMBERLAND:
Rossleigh, Ltd., Northumberland Road, Newcastle-on-Tyne.

SCOTLAND:
Ritchies, Ltd., 36-44 Renfrew Street, Glasgow.
Rossleigh, Ltd., 32 Shandwick Place, Edinburgh.
Rossleigh, Ltd., 383 Union Street, Aberdeen.
Rossleigh, Ltd., 4 Park Place, Kirkcaldy.
Rossleigh, Ltd., Allan Park, Stirling.
Rossleigh, Ltd., 7-8 Nethergate, Dundee.
The Scottish Automobile Co., Ltd., 7 and 8 Queensferry Street, Edinburgh.

WALES:
Tom Norton, Ltd., Penarth Road, Cardiff.
Braid Bros., Abergele Road, Colwyn Bay.
Jones Bros., Henblas Garage, Bala.
Brookes Bros., White Rose Garage, East Parade, Rhyl.

IRELAND:
McEntagart Bros., Ltd., 22-23 Duke Street, Dublin.
Victor, Ltd., 1 Bedford Street, Belfast.

S.S. DEALERS—OVERSEAS.
AFRICA Clarks's Garage, Johannesburg.
AUSTRIA G. H. Koch, 11 Obere Donaustrasse 99, Vienna.
BELGIUM Paul Kutsukian, 143 Avenue de Belgique, Antwerp.
CZECHOSLOVAKIA Boohnstedt Petersen A/S Copenhagen, 1-3 Sundkrogsgade.
DENMARK Soc. Industrielle Commercial Automobile (Chas. Delecroix).
FRANCE Marcq-en-Barœul.
Sub-Agents:
Biarritz. M. Ponnier, Boulevard du Casino, Saint Jean-de-Luz.
HOLLAND Automobielbedrijf Van Heel & Co., Ernst Casimirlaan 2-4, Arnhem.
INDIA Volkart Bros., Bombay.
PORTUGAL Wilfred C. Ennor, 151 Rua 31 de Janeiro 2 Oporto.
PALESTINE Maurice Tenenbaum, P.O.B. 875, Jerusalem.
SOUTH AMERICA Ehler Nash Motors, Bolivar 1599, Buenos Aires.
SPAIN C. de Salamanca, Paseo de Recoletos, 12, Madrid.
SWITZERLAND Emil Frey, Limmatstrasse 210, Zurich.
SWEDEN Phillipsons Automobiles, Ltd., Stockholm.
EGYPT Albert Benin, 15 Place Mohamed Aly, Alexandria.

OPEN FOUR-SEATER TOOL LAYOUT

Fig. 59.
TOOLS AND SPARES.

A Tool Kit is supplied with each car and consists of the following parts:

1. Two Tyre Levers (supplied by Messrs. Dunlop).
2. Wheel Nut Hammer.
3. Set of Three Spanners (Two only in S.S. II).
4. Adjustable Spanner.
5. Two Tube Spanners and Tommy Bar.
6. Distributor Contact Breaker Spanner and Gauge.
7. Jack and Handle.
8. Starting Handle.
12. Set Screws for Camshaft Wheel withdrawal.
15. Screw Driver.
16. Tyre Pump.
17. Pliers.
18. Pin Punch (S.S. I. only).
19. Valve Clearance Gauge and Sparking Plug Gauge.
20. Tool Roll.
21. Valve Spring Removal Tool (See Illustrations Nos. 32 and 33).

The following Spares are supplied:

22. Supply of Spare Nuts and Washers.
23. Valve Spring and Collar.

Literature. The following booklets will be found amongst the literature supplied with the Car. When items 1, and 2 are temporarily out of print and cannot be despatched with the car, the owner is requested to write to the respective manufacturers, the addresses being given on page 75.

Instruction Books—1. Electrical System.
2. Ignition System.
CONTENTS.

Preface
Memos. and Licence Data
General Data
Road Speed Data
S.S. Driving Hints
Care of Coachwork and General Instructions
Screen Adjustment
Open Four-Seater Hood
Open Four-Seater Side Curtains
Access to Back Axle and Gear Box
Open Four-Seater Door Straps
Dismantling Back Axle
Door Light Replacement
Trafficator Replacement
Battery Removal

General Upkeep
Oil Pressure and Ammeter Readings
Regular Inspection
Controls
To Start the Engine
"Warming Up"
Starting the Car
Using the Brakes
Gear Changing
New Engines
Cooling System
Thermostat
Using the Jack

Lubrication—
Engine
Oil Cleaner
First 500 Miles
Ignition Distributor
Dynamo and Starter
Gearbox
Rear Axle
Water Pump
Propeller Shaft Joints
Front Axle
Steering
Brake Cross Shaft and Cables
Road Springs
Controls
Oil Guns

Recommended Lubricants

Care of the Tyres
Correct Tyre Pressures

Running Adjustments—
Brakes
Shock Absorber Adjustment
Clutch Adjustment
Valve Clearances
Spark Plugs
Ignition
Carburettor
Petrol Pump
Fan Belt Adjustment
Trafficators
Instructions regarding the Horns
Decarbonising and Valve Grinding
Grinding the Valves
Loose Bolts or Nuts

CONTENTS—continued

General Description of Chassis—
Engine
Cooling System
Petrol Gauge
Electrical System
Transmission
Further Chassis Parts
Correct Adjustments
Possible Troubles and their Remedies
Location and Correction of Faults
Oil Pressure
Exhausts
Accessories and Equipment
Service
Copy of Guarantee
S.S. Dealers
Tools and Spares
A Few Don'ts
Mileage and Maintenance.
Notes

INDEX TO ILLUSTRATIONS.

Fig. No.
0 S.S. I. and S.S. II. Chassis
1 Timing Diagram
2 Windscreen S.S. I.
3 Controls
4 Synchro Mesh Cones
5 Thermostat
6 and 7 Using the Jack
8 Oil Cleaner in Section
9 Gear Box Dip Stick
10 Tyre Tread Examination
11 Fitting Tyre
12 Front Axle Details
12 to 14 Brake and Shock Absorber Adjustment
14 Rear Axle, etc.
15 Brake Shoes, S.S. I.
16 Clutch
17 Interior of Tappet Chamber
18 Tappet Adjustment
19 to 27 Carburetter
20 Fuel Pump—Section
21 to 32 Correct Order for Tightening Cylinder Head Nuts
23 Valve Spring Compressor
24 Ignition Timing
25 to 37 Engine and Gearbox Section
38 Technical Wiring Diagram (all models)
39 Engine Details Inside Crankcase, S.S. II.
40 Cut Out and Regulator Unit
41 Propeller Shaft Universal Joint
42 Gearbox Details
43 Rear Axle
44 Steering Details
45 Oil Pump Details
46 Testing Crankshaft Clearance, S.S. I.
47 Oil Pump Details
48 Rear Axle Details
49 Open Four-Seater Tool Layout
50 Saloon Tool Layout

A systemised method applied to maintenance and lubrication, compiled to ensure the correct attention to adjustments relative to mileage, as considered necessary to maintain a high level of efficiency throughout the life of the car.

MILEAGE and MAINTENANCE

The following pages are set out in the form of a diary, showing the speedometer readings, the corresponding key letters, and a space reserved for the signature and address of the operator or agent responsible for the completion of the work required.

We have included the latter section of the diary to serve as a positive record showing that the car has been carefully maintained. The owner will realise that the use of this system will not only maintain efficiency, but will also give a superior second-hand value to the car if produced when exchanging for a new model.

The owner should, whenever possible, have the major operations completed by an S.S. Agent. A list of S.S. Agents will be found on pages 78 to 81.
<table>
<thead>
<tr>
<th>Speedometer Reading</th>
<th>Follow Instructions</th>
<th>1st 1000</th>
<th>2nd 1000</th>
<th>3rd 1000</th>
<th>4th 1000</th>
<th>5th 1000</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>A 1st 500 only</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,000</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,000</td>
<td>B-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,000</td>
<td>B-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,000</td>
<td>B-D-E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,000</td>
<td>B-D-F-K</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,000</td>
<td>B-D-E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,000</td>
<td>B-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,000</td>
<td>B-D-E-H</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,000</td>
<td>B-D</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9,500</td>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10,000</td>
<td>B-D-E-G</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

These instructions repeat every 10,000 miles, therefore the continuation will be taken from the 500 miles reading, when the equivalent will be 10,500.
A—FIRST 500 MILES.

Run the car for three or four miles to warm up the oil, drain the engine sump (and, if possible, remove and clean), drain gearbox and rear axle; now replace the drain plugs in the gearbox and rear axle and fill up with paraffin or petrol; the gearbox and rear axle should now be drained finally, when the paraffin will carry away any injurious matter which may have accumulated during the first few hundred miles.

Replenish the gearbox with fresh Castrol X.L., and the axle with Castrol D. It may be necessary at this mileage to re-set the carburettet slow running adjustment. See pages 35 and 36.

Check over the tightness of cylinder head nuts in the correct sequence as given on pages 40 and 41. See Illustrations 30 and 31.

B—EVERY 500 MILES.

Check accumulator fluid and replenish with distilled water if required.

Access to the filler plugs is obtained by removing the two screws securing the battery lid; the securing rods will then drop sufficiently to allow the lid, and the battery when required, to be removed without obstruction.

Remove the detachable glass bowl from the petrol pump and clean out any foreign matter which may have accumulated in the glass.

Apply grease gun to the following nipples and give two or three strokes:

1. Nipples on front axle swivel pins.
2. Front spring shackle pin nipples.
3. Nipple on fan.
4. Nipple on water pump (2 strokes only).
5. Steering track rod nipples.

Coat bonnet rest with a graphite anti-squeak compound.

Apply oil can to bonnet hinges and fasteners, also to door locks (hold the bolt back and insert the oil in the opening exposed around the lock bolt); apply oil to the screen fittings and seat slides.

Apply grease gun to the nipples provided on the door hinges.

D—EVERY 1000 MILES.

Apply oil gun to brake cross shaft supports and brake cable connections, also to the clutch control and pedal shaft bearings (no nipples).

Apply oil can (thin oil) to controls under bonnet, also to ignition distributor oiler; the cam may be smeared with vaseline if it appears dry. The dynamo grease cap should be given one turn on the S.S. II. The reader is cautioned that far more trouble has been caused by excessive lubrication of the dynamo than by too little.

Apply oil gun to steering box nipple and give five strokes only, using Swanshot S.T.

Important. Don't remove the steering box cover plate for the purpose of filling with oil. The cover plate locates the trunnion, which may become disengaged if the plate is removed.

E—EVERY 2000 MILES.

Drain oil from engine sump, then replenish with fresh oil. Use Castrol A.A. in Winter, Castrol X.L. in Summer. (Alternative lubricants on page 23.)

Examine the oil level in gearbox and rear axle and replenish if necessary with the following lubricants. The level plug is shown in Fig. 8 and is accessible from underneath, this should be removed before filling:

- Gearbox—Castrol X.L.
- Rear axle—Castrol D.

(Alternative lubricants on page 23.)

Apply grease gun to nipples on the remote control gear lever casing, giving two or three strokes only. (Accessible through transmission arch, Fig. 3.)

Remove road wheels and apply grease gun to the four hub bearings, giving two or three strokes; if too many strokes are given the grease will find its way into the brake drums and seriously reduce the braking power. Before replacing the wheels, smear the serrations and bare metal surfaces with grease to prevent rust and facilitate easy removal and replacement.

Give one or two drops of thin oil to the dynamo oiler on the S.S. I.

Clean carburettet filter.

"Trafficators." A little vaseline should be applied by means of a match stick or feather, between the brass cam and the small copper leaf spring. This is situated near the hinge and can be lubricated when the "Trafficator" is switched up.

F—EVERY 5000 MILES.

Apply grease gun to propeller shaft joints. (Use special grease recommended on page 23.) (The front nipple is accessible through transmission arch, Fig. 3, and the rear nipple from below.)

Lubricate ignition distributor, proceeding as follows:—Withdraw the moulded rotating arm from top of the spindle and add a few drops of thin machine oil. Do not remove the screw exposed to view, but drop the oil on top of it; the oil then passes through a clearance to lubricate the automatic timing control.

Give one drop of oil to the pivot on which the contact breaker arm works.

Check over all engine nuts, also the bolts and screws securing the wings, body and seat fittings, etc.

Lubricate the road spring leaves.

Remove the sparking plugs, clean and set the points to a clearance of 0.020 inches; this can be tested with the gauge supplied with the tool kit. It is advisable when replacing the plugs to inspect the washers and replace with new if necessary.
MILEAGE AND MAINTENANCE.

G—EVERY 10,000 MILES.

Drain oil from gearbox and rear axle and wash out with paraffin or petrol; give time to drain and refill with fresh oil. Use Castrol X.L. for the gearbox and Castrol D. for the rear axle.

Insert grease into rear bearing of dynamo through cover plate provided.

Renew oil cleaner. See page 19.

Engine Sump.

Drain oil and remove sump to thoroughly clean it out. At the same time, remove and clean the oil filter.

The sparking plugs have now completed a normal efficient life and should be replaced; we recommend Champion No. 16 for S.S. I., Champion J.9 for S.S. II.

1. Complete Check and Adjustment of Brakes.
 1. Jack up all four wheels.
 2. Check and, if necessary, tighten spring "U" bolts, backing plate bolts, steering connections and wheel bearings.
 3. Detach cables at cross shaft and thoroughly lubricate, in accordance with instructions given on page 22.
 4. Lubricate bearings of cross shaft and make sure it works freely, also see that brake pedal and cross shaft levers return to their respective stops.
 5. Examine brake linings. Loose linings should be re-riveted if wear is not excessive. When linings are worn to rivets, or through previous incorrect adjustment excessive uneven wear has taken place, new re-lined shoes should be fitted. Oil or grease-soaked shoes should invariably be replaced. Do not re-line Bendix shoes, but fit genuine Bendix factory-lined shoes. These shoes have the correct lining properly fitted, and ground to fine limits, and cost no more.

2. Re-setting of Anchor Pins.

The re-setting of anchor-pins is only necessary when new re-lined shoes are fitted, or when, having by means of the shoe adjuster (and eccentric adjuster on S.S. I.), obtained '008" shoe-to-drum clearance at the shoe adjuster end of the shoe, it is found that shoe-to-drum clearance at the anchor-pin end is greater or less than '007" to '010", then the following procedure should be carried out.

Having carried out procedure as detailed in Section 1, proceed as follows:—

1. Slacken off brake adjusters (Fig. 12). Slacken anchor-pin lock nuts. (Slacken off eccentric adjuster lock nut on S.S. I.)
2. Adjust position of anchor pin (Fig. 15) by tapping with a soft hammer towards or away from axle as necessary, until a clearance of approximately '008" is obtained between lining and drum at both ends of each shoe. (Clearances are checked by the insertion of a '008" feeler through slot in drum.) For S.S. I. turn eccentric adjuster in direction of forward rotation of wheel when adjusting anchor pin.
3. Tighten up anchor-pin lock nut as tightly as possible.
4. S.S. I. Tighten up eccentric adjuster lock nut.

MILEAGE AND MAINTENANCE.

3. Adjustment of Cables.

Cables being still detached from cross shaft levers, as per Section 1, proceed as follows:—

1. Expand shoes fully in drums by screwing up the shoe adjusters (Fig. 12).
2. Adjust yoke-end until pins can just be inserted through yoke-ends and cross shaft levers, meanwhile pulling on cables to remove back lash at shoe actuating lever. Attach cables to cross shaft levers and lock up yoke-ends.

4. Equalisation of Brakes.

Brake shoes being fully expanded in drums, gradually unscrew adjusters until all wheels are just free, taking care to slack off all brakes equally. Finally check balance on the road as described on page 27.

Bendix Exchange Brake Shoes. Bendix brake shoes should not be re-lined but genuine factory-lined shoes fitted. These shoes have the correct type of lining, correctly fitted and ground to fine limits, ensuring efficient braking and long life.

Bendix Exchange Shoes are obtainable from all Bendix Service Agents and S.S. Distributors and Dealers, or direct from Bendix Limited.

H—APPROX. EVERY 8000 MILES.

The engine may now require decarbonizing. On the other hand, if the 8,000 miles have accumulated in a series of long runs using a good quality petrol, the car will continue to give good service for several hundred miles, whereas if the runs have been short and interrupted such as would transpire in town work, and a poor quality petrol used, the carbon deposit in the combustion chambers will be excessive.

The necessity for decarbonizing will be indicated by the falling off in power, heavy petrol consumption, and over-heating. This condition will also produce a metallic tapping, usually referred to as pingking, and a knocking at slow speeds caused by pre-ignition.

Instructions for decarbonizing and valve grinding will be found on page 40.

K—FIRST 5000 MILES, THEN EVERY 10,000 MILES.

Inspect and adjust brakes if necessary.

1. Jack up all four wheels.
2. Detach the four operating cables from their respective levers on cross shaft.
3. Make sure that cables are free in their conduits, cross shaft works freely, and that when brakes are "off" brake pedal and operating levers return back against their stops.
4. (S.S. I. only.) Centralise shoes in drums. To do this, slack off locknut and turn eccentric adjuster in direction in which wheel revolves when car is moving forward, until a slight brake-drag is felt. Then slack off adjustment slightly until wheel is just free. Tighten locknut.
5. Expand shoes fully in drums by screwing up the shoe-adjusters.
6. Adjust cable lengths. Cables should be adjusted just tight enough, that while there is no slack, the joint pins can just be inserted through the yoke-ends and cross shaft levers.
7. Adjust and equalise brakes. To do this, unscrew shoe adjusters until each wheel is just free, taking care to slack off all brakes equally. If the brakes are not quite balanced, adjust them on the road as previously described.