Jaguar XK 120
Super Sports Two-seater, 1949-51

Manufacturers: Jaguar Cars, Ltd., Coventry.

After making its first appearance at the 1948 Earls Court Motor Show, the XK 120 was put into production during 1949. Since then it has been outstandingly successful in competition work, and has been sold in comparatively large numbers overseas, particularly in North America. The success has been largely due to the design of the 3½-litre, double overhead camshaft, six-cylinder engine, and the torsion bar independent front suspension. Transmission and chassis are entirely orthodox. Such engineering changes as affect service are listed here. During 1951 a fixed head coupé was introduced, differing only in bodywork and minor chassis modifications.

Chassis numbers are six-figure serial numbers starting as follows:

- XK 120 fixed head coupé R.H.D. 669001; L.H.D. 679001.

They are stamped on top of the chassis frame side member opposite the flywheel housing on the driver’s side, and on the front cross-member under the radiator.

Engine numbers started at W 1001, and are suffixed /7 or /8 to indicate compression ratio. The numbers are stamped on the oil filter boss on the off side of the engine, and on the rear face of the camshaft drive housing on the cylinder head of recent engines.

Both chassis and engine numbers are stamped on a plate fixed on the near side of the scuttle.

No special tools are needed, except for a template for timing the camshafts. This is supplied in the car tool kit. Threads are in process of being changed from B.S.F. to S.A.E., but until the change is complete there will be a mixture of S.A.E. and Whitworth hexagons.

NUT TIGHTENING TORQUE DATA

<table>
<thead>
<tr>
<th>Nut Type</th>
<th>B.S.F.</th>
<th>S.A.E.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cylinder head</td>
<td>10 ft</td>
<td>15 ft</td>
</tr>
<tr>
<td>Main bearings</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>Big and small cap</td>
<td>6</td>
<td>10</td>
</tr>
<tr>
<td>Camshaft housing</td>
<td>12</td>
<td>18</td>
</tr>
<tr>
<td>Flywheel</td>
<td>20</td>
<td>30</td>
</tr>
</tbody>
</table>

DISTINGUISHING FEATURES—No outward changes have taken place. Insert: bonnet safety catch.
ENGINE

MOUNTING
At front, bonded rubber blocks bolted to chassis frame brackets and to plate bolted to front of timing cover. On R.H.D. cars only, two packing pieces fitted under offside mounting to give clearance between carburettor and steering column.

At rearmost, bonded rubber blocks bolted to bottom of gearbox rear cover and to chassis frame cross-member. Stabilizer mounting on side opposite to steering consists of rubber block bolted to chassis frame and attached to arm on front of flywheel housing by set screws and distance-piece. Tighten all bolts fully.

REMOVAL
Engine and gearbox can be removed together, or gearbox can be removed from engine. Easiest to remove together.

Detach bonnet from hinges. Disconnect radiator hoses. Remove nuts from radiator tie-rods and holding down rods, and lift out radiator core. Disconnect all pipes, wires and controls, and remove nuts from front mountings and setscrew from stabilizer. Remove seats, carpets, floorboards, gearbox cowling and propeller shaft tunnel. Disconnect front end of propeller shaft, speedo drive, reversing lamp switch wire and clutch pedal linkage. Remove cotter-clamp bolt from base of clutch pedal, and detach pedal cross-shaft ball housing from bellhousing (two setscrews). Push pedal cross-shaft outwards and wedge outer end outside chassis frame. Take out four bolts holding rear mounting to gearbox.

Place single sling under ramp towards front, passing it round behind dynamo and water outlet elbow. Engine and gearbox unit can then be lifted out forwards.

CRANKSHAFT

Seven main bearings. Thin wall, steel-backed, white metal-lined shells located by tabs. End float controlled by half thrust washers located in either side of centre bearing cap. No hand fitting permissible. Bearing shells Nos. 1, 4 and 7 are interchangeable, as are Nos. 2, 3, 5 and 6. It is possible to change all main bearing shells without removal of crankshaft, but this should be done only in direct emergency. Thrust half-washers can be changed by removal of centre cap.

Flywheel, with integral starter ring gear, spigoted on rear flange of crankshaft, retained by two setscrews (six setscrews on earlier engines) and located by two dowels. Flywheel can be refitted at 180 deg. from original setting, but should be fitted with T.D.C. mark set correctly. Oil impregnated bronze spigot bearing bush floating fit in end of crankshaft.

Oil pump and distributor drive gear (longer boss to rear), timing sprocket (either way), oil thrower, distance-piece and split tapered collet carrying fan pulley hub are keyed on front end of crankshaft with three Woodruff keys, and retained by starter dog setscrew and large washer which bears on pulley hub, to which boaded rubber torsional vibration damper is riveted. Hub is keyed on tapered collet with Woodruff key. Pulley spigoted and bolted to hub.

Asbestos oil seal, half in timing cover and half in sump, bears on distance-piece behind pulley. Split oil collector housing fits round oil return thread on rear end of crankshaft. Lower half, on which cork strip sealing rear of sump fits, bolted to upper half by two Allen head setscrews with hollow dowels. Upper half dowelled and bolted to crankcase.

CONNECTING RODS

Big end thin wall, steel-backed, white metal-lined shells located by tabs. No hand fitting permissible.

Small ends bronze bushed for floating gudgeon pins.

Rods are symmetrical, but should be fitted with numbers on big end and cap to near side.

Three different types of rod have been used, identified by part numbers stamped on rods.

Longitudinal and transverse engine sections. Scrap section shows drive to distributor and oil pump.
PISTONS

Aerolite solid skirt or Brico split skirt aluminium alloy. Gudgeon pins located by spring rings. Compression rings chromium plated. Pistons should be fitted with cylinder bore number stamped on crown towards rear (Brico pistons with split to near side). Note that Jaguar practice is to number cylinders from rear to front. Where reference is made in this article to cylinder numbers, our usual practice of numbering from front to rear is maintained.

CAMSHAFTS

Duplex roller endless chain drive in two stages. First stage drives double idler sprocket, and has flat spring tensioner on off side, fibre rubbing block on near side. Second stage passes round idler sprocket, both camshaft sprockets and below small tensioner sprocket on eccentric hub.

Larger idler sprocket pressed on and keyed on of smaller sprocket, which is bushed and runs on spindle. Tensioner sprocket is bushed and runs on eccentric spindle, which carries large serrated D washer at front, retained by nut and located by spring loaded plungers engaging in serrations. Both sprocket spindles are carried in bracket assembly comprising front and rear sections bolted together by four studs at top, and bolted to cylinder block by four screws at lower edge. Lower spindle retained by spring ring in rear section only, located at front in timing cover. Front section of bracket has lugs at top for location of camshaft sprockets while cylinder head is removed.

Complete assembly of timing chains, sprockets and brackets can be removed after removal of timing cover.

To adjust tension of upper chain detach breather housing from front of head, and slacken locknut (tabwasher) on spindle. Press in plunger and turn serrated washer and locknut clockwise to tighten until tension of chain can just be felt. When refitting baffle plate in breather housing, note that oil drain aperture is at bottom.

Each camshaft runs in four split steel-backed, white metal-lined shells located by dowels. Oil fed through drillings in head to rear bearings, and through hollow shafts to other bearings. End float controlled by front bearing between sprocket and flange on shaft.

Each camshaft sprocket spigoted on flange of shaft and retained by two screws with retaining plate and serrated adjusting plate. Plates are retained in sprocket by spring ring, so that fine timing adjustment need not be upset when sprocket is removed. Retaining plate carries stud, retained by spring ring, which projects through slotted lug in bracket.

When removing head for top overhaul first slacken chain tensioner, then detach each sprocket and slide it forwards along slot, securing it with nut on stud (4\(\alpha\) in A/F nuts holding exhaust pipes to manifold will fit studs). If sprockets are marked in relation to camshafts they can be refitted as found.

Before refitting cylinder head, turn crankshaft to T.D.C. No. 1 firing (mark on flywheel visible through aperture to mainshaft housing). Turn both camshafts until keyways in flanges behind front bearings are vertical to camshaft housing faces, and locate accurately with gauge in tool kit. Head can then be lowered into place without risk of valves fouling pistons.

To remove exhaust (nearside) camshaft, first disconnect rev. counter drive and detach housing from rear of head with internal lipped oil seal, and rubber sealing ring round spigot.

VALVES AND TAPPETS

Overhead, set at 70 deg. included angle. Not interchangeable, inlet larger than exhaust. Split cone cutter fixing, double springs with seats between springs and head.

Valve guides plain, no shoulder, interchangeable. Press in until outer end projects 0.07 in from spring seat. Valve seat inserts for inlet and exhaust shrunk into light alloy head. Plain cylindrical tappets fit over valves and slide in guides shrunk into head. Adjust clearance between cam and tappet by pad on top of valve stem. Pads are available in thicknesses ranging from 0.68 in to 0.75 in in 0.01 in steps. Pads are identified by etched letters A to S, A being thinnest. Camshaft must be removed for tappet adjustment.

For renewal of valve seat inserts or tappet guides, light alloy head must be heated in oil to 450-460 deg F, when new paris should press in easily.

LUBRICATION

Gear pump in sump, bolted to front of No. 1 main bearing cap and driven from skew gear by loose quill. To remove pump, disconnect delivery pipe at flange joint.

Shoek drive gear retained on shaft (Woodruff key) by nut. Shaft runs in bronze bush pressed into housing on front of crankcase and retained by setscrew. Upper end of shaft has offset slot for distributor drive.

When refitting skew gear, shaft and bush assembly, turn crankshaft to T.D.C. 1/6, and push in assembly so that, when skew gear meshes with crankshaft gear, slot is parallel to crankshaft centreline, with larger segment towards engine.

To dismantle pump detach bottom cover with intake strainer (note gasket)
and tip out driving and driven gears. Driving gear runs directly in pump body and cover. Driven gear runs on spindle pressed into pump body.

Oil drawn through floating gauze intake strainer and delivered through pipe and fittings in crankcase to external full flow filter on off side (TEKLEDM type EA 2245, with removable element type FG 2383).

Adjustable spring-loaded plunger relief valve in body screwed into front of filter body on off side. To adjust, remove cap nut. Normal pressure 40 lb at 2,500-3,000 r.p.m., 5 lb idling.

IGNITION DATA

<table>
<thead>
<tr>
<th>Advance range</th>
<th>7 1/2 R</th>
<th>9 1/2 R</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vacuum crank</td>
<td>22-26°</td>
<td>20-28°</td>
</tr>
<tr>
<td>Vacuum crank</td>
<td>22-26°</td>
<td>20-28°</td>
</tr>
<tr>
<td>Advance start crank</td>
<td>220-400</td>
<td>200-1950</td>
</tr>
<tr>
<td>Contact spring tension</td>
<td>20-30</td>
<td>20-30</td>
</tr>
<tr>
<td>Condenser capacity</td>
<td>15,000</td>
<td>15,000</td>
</tr>
<tr>
<td>Rear light</td>
<td>20-24</td>
<td>20-24</td>
</tr>
<tr>
<td>Front light</td>
<td>6-8</td>
<td>6-8</td>
</tr>
<tr>
<td>Contact breaker gap</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Plug type</td>
<td>Champion</td>
<td>Champion</td>
</tr>
<tr>
<td>Plug gap</td>
<td>14 mm</td>
<td>0.145 in</td>
</tr>
</tbody>
</table>

COOLING SYSTEM

Pump and fan. Non-adjustable bellow thermostat in housing bolted to radiator header tank. Pump impeller shaft is independent of pulley bearings, and has lipped rubber water seal.

To remove pump, which is attached by three studs to timing cover and six long setcrews into cylinder block, remove radiator (tie rods and holding-down rods).

To dismantle pump remove fan and pulley. Extract spring ring round hub and driving dog, and drive taper pin out of dog. Draw out shaft and impeller through long bronze bush and lipped seal in body (lip towards impeller). Impeller is pinned on shaft.

To remove pulley hub from body, extract spring ring retaining front bearing, and press body out of hub. Drift out rear ball bearing from front with felt seal and retainer. Extract spring ring retaining front bearing in hub, and press out to rear. When reassembling, note that felt washer fits in recess in front of hub, with dished retainer between washer and front bearing. Distance piece fits on body between front bearing and spring ring.

Adjust fan belt by swinging dynamo until there is about six movement either way on vertical run of belt.

TRANSMISSION

CLUTCH

 Borg & Beck single dry plate, graphite thrust release bearing.

Only external adjustment is by nut on rear end of pedal pull rod, to give Clutch, bell-housing and gearbox in section

GEARBOX

Four-speed, synchronesh on 2nd, 3rd and top gears. Single helical gears.

To remove gearbox take up carpet seats, floorboards, gearbox cowl and propeller shaft tunnel. Disconnect front end of propeller shaft, reversing light switch wire, speedo drive and clutch pedal linkage. Remove cotter clamp bolt from base of clutch pedal, and detach pedal cross-shaft ball housing from bellhousing. Push pedal cross-shaft outwards, and wedge outer end outside chassis frame. Take out four bolts holding rear mounting to gearbox, and setcrews from stabiliser mounting. Jack up engine under rear of sump, detach bellhousing cover and take out bellhousing setcrews. Gearbox can then be drawn back and lifted out.

To dismantle gearbox remove top housing and front bearing cover with lipped oil seal (note copper washers under setcrew heads). Turn primary shaft so that cut-away on top gear dogs clears layshaft constant mesh gear. Tap mainshaft forward to drive out primary shaft and ball bearing, with caged roller spigot bearing. Tap mainshaft back until outer race of roller bearing is free. Mainshaft assembly, with rollers and inner race of bearing, can then be lifted out through top. Lift out layshaft cluster with needle roller bearings and thrust washers, and bushed reverse idler.

Primary shaft ball bearing retained on shaft with chip shield by left-hand threaded sleeve nut.

To dismantle mainshaft assembly slide off top/3rd synchronesh assembly, noting interlocking plunger and ball (in later gearboxes only) in drilling through synchro hub. Press down plunger in shaft, locking 3rd gear splined thrust washer, releasing slide off 3rd gear with 41 needle rollers. Draw off inner race of roller bearing and remove 2nd gear.
and synchro assembly (same as top/3rd gear, with interlocking plunger and ball). When reassembling note that interlocking plunger and ball in top/3rd and 2nd synchro hubs must be opposite cutaway splines on mainshaft and in synchro sleeves.

Layshaft cluster is built up, with integral 1st gear. To dismantle, extract spring ring behind constant mesh gear and press gear back until split ring re-formed in front is released. Second spring ring retains 2nd and 3rd gears against shoulder on shaft.

Reverse idler spindle should not be separated from rear extension housing, as rubber sealing ring re-cessed in spindle cannot be replaced without special tools.

When reassembling box insert small retaining rings in layshaft needle roller recesses, and insert 29 needle rollers in each end, sticking them in with thick grease. Insert outer retaining ring in front end of shaft with large bronze thrust washer. Stick on steel thrust washer (pinned to box). Insert stepped steel washer at rear (pinned to box). Insert outer retaining ring with small bronze thrust washer. Lower cluster into box and insert thin rod to support it.

Remove reverse rocking lever from box, feed in mainshaft and propeller shaft assemblies, and drive in roller bearing outer race. Lift layshaft cluster with rod and insert dummy spindle.9/16in diameter, with generous chamfer on end, into layshaft so as not to disturb needle rollers. Assemble long distance-piece on mainshaft, and offer up rear extension housing with layshaft spindle, and reverse idler in place on spindle (fork groove to front). Insert layshaft spindle, pushing out dummy spindle to front. When extension housing is in place, assemble reverse rocking lever and fork, and complete assembly of box.

To dismantle top cover remove lever and pivot jaw assembly (nut on front of pivot housing). Detach sealing plate from rear of cover and unscrew plugs retaining selector springs and plungers. Unscrew taper-ended screws from selector forks, and draw out rods to rear one at a time,catching interlock balls as they are released from cross-drilling in rear of cover.

PROPELLER SHAFT
Hardy Spicer needle roller bearing universal joints, series 1900. Nipples for layshaft assembly.

To remove shaft, remove seats and tunnel.

REAR AXLE
E.N.V. hypoid bevel drive. Semi-floating shafts. Final drive housing bolted, rear cover welded to housing casing.

Early cars had four-star differential and split cage, later changed to two-star and one-piece cage. Only difference affecting service is that halfshafts are not interchangeable, as on later axles they are shorter and bolt on thrust block at inner ends.

Note.—Axle Nos. JHS 1/JHS 1602 are fitted with wedges between springs and axle pads. Subsequent axles have no wedges. Change to two-star differential took place at JHS 1840. Axle numbers stamped on final drive housing.

To remove axle from car, disconnect shock absorbers, brake cables, check straps, brake fluid pipe and rear end of propeller shaft. Remove all axles and rear pipe, and drop rear ends of springs. Axle assembly can then be removed to rear.

Half-shafts upset at outer ends to form hub flanges, spined in differential bearing lugs at inner ends, which have hardened steel button on four-star differential type, but are plain on two-star type.

Hubs carried in taper roller bearings in housings spigoted and flange-bolted to axle casing with brake backplates and shims for bearing adjustment (bolts have heads inside, castellated nuts outside). Shims .002, .006, .016, .031 and

ing adjustment, to give 8-10 lb in pre-load. Oil seal (lip inwards) pressed into final drive housing bears on differential flange hub.

Shims (.004, .006, .010in thick) behind outer race of inner bearing for bevel pinion mesh adjustment.

Crown wheel spigoted on one-piece differential cage (earlier split cage) and retained by 10 set screws. Differential side bevel gears run directly in cage with flat thrust washers behind. Planet bevel pinions have spherical thrust washers behind.

Differential assembly carried in taper roller bearings in split housings, with ring-nut adjustment. Tighten ring-nuts until there is no play and no drag, then tighten 1/16th turn after this for greater preload. Turn both ring-nuts equally to give .006-.008in backlash.

CHASSIS

BRAKES
Lockheed hydraulic. Two leading shoe front brakes with separate cylinder for each shoe. Rear brakes have single floating cylinder incorporating bell-crank for handbrake operation through cable from equalizer below central handbrake.

Micron adjuster on each wheel cylinder, with slotted head, reached through hole in brake drum after removal of wheel. Apply brakes hard to position shoes in drums, jack up car, remove wheel, turn adjuster clockwise until shoe touches drum and back off until free (one notch). Note two adjusters for each front wheel. Slack in handbrake cable can be taken up on equalizer bolt. Shoe adjusters must be tightened fully first, and readjusted afterwards.

<table>
<thead>
<tr>
<th>BRAKE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Drum diameter</td>
</tr>
<tr>
<td>Lining length</td>
</tr>
<tr>
<td>Thickness</td>
</tr>
<tr>
<td>No. of rivets per shoe</td>
</tr>
</tbody>
</table>

*On later front brakes 12 rivets, with extra floating rivet to identify M14 linings. Fit shoe with rivet rivet on axle away from back plate.

REAR SPRINGS
Semi-elliptic. Silentblock or Metal-astik rubber bushings for spring eyes and shackles. Loose rubber shackle bushes on earlier cars. Tighten fully with weight of car on springs. Centrebolts offset. Fit springs with shorter section to front.

<table>
<thead>
<tr>
<th>REAR SPRING DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length (eye centres, Ht)</td>
</tr>
<tr>
<td>Width</td>
</tr>
<tr>
<td>No. of leaves</td>
</tr>
<tr>
<td>Free length</td>
</tr>
<tr>
<td>Loaded length</td>
</tr>
<tr>
<td>Leaf load</td>
</tr>
</tbody>
</table>

*Centrebolts offset 5in to front, 10in to centre.
FRONT SUSPENSION

Independent, torsion bar. Inner ends of upper and lower links pivoted in loose rubber bushings bonded to inner sleeves. Ball joints at outer ends. Upper link outer ball socket bolted between arms of link, with shims for castor adjustment. Ball pin tapered and fitted in top of stub axle carrier member. Ball joint is seated and serviced only as assembly.

Lower link outer ball pin tapered and fitted in end of lower link main arm. Lower ball seat carried in cap bolted to stub axle carrier, which forms upper ball seat, with spigot ring and shims (0.001 in thick) in joint to give 0.013 in float in ball joint. These shims must not be taken out to take up wear in ball joint. On early cars lower ball seat was bronze, with nipple for lubrication. Later, Ferobetas seat introduced to cure low speed wobble. If Ferobetas seat is used to replace bronze, nipple hole must be plugged, and all parts thoroughly degreased.

Upper and lower link inner pivot brackets are bolted to frame and can be removed without disturbing rubber bushings. Upper link brackets have shims for camber adjustment. If bushings are damaged, nuts must be tightened fully when weight of car is on springs.

To remove torsion bar (necessary for removal of lower link), jack up car to “no torsion” position and take out setscrew locating adjusting lever at rear end of bar, and cotter-clip bolt in lever. Detach muff coupling on front end of bar from lower link arm (one bolt, one setscrew) and slide back, when bar can be lowered and drawn out forwards.

To check torsion bar setting, car must be on level ground. Place two 50-lb weights in car, one in front of each seat. Bounce front of car to ensure freedom from stickiness, then depress front and allow it to rise slowly. If setting is right, measurement from ground to lower face of foremost parallel section of chassis frame will be 7½ in.

To correct setting, turn brass adjusting nut on rear adjusting lever clockwise to raise car, after slackening locking setscrew (car must be jack-uped). If setscrew is near end of slot in chassis frame, bar must be repositioned. Detach muff coupling at front end, slide back free of serrations and re-engage after slackening off adjusting nut fully.

Hubs run on taper roller bearings. Felt seal in retainer behind inner bearing. Adjust by castellated nut to give 0.25 in end float (tighten nut and back off ¼ turn). Three-piece track rod. Centre section supported by drop arm and relay arm on opposite side. Relay arm retained on tapered end of shaft by castellated nut and split pin. Shaft has threaded end which screws into upper part of housing, lower part having long bronze bush and lipped oil seal. If arm is removed from shaft, when reassembling, stop against drop arm and relay arm to give flat clearance between wheels and chassis frame on full lock.

To check castor and camber, place four 7½ in test gauges between chassis frame and ground at front and rear ends of parallel section of frame. Gauges can be made up of stout steel plate capable of bearing weight of car (see sketch). Jack up rear of car, remove wheels and lower chassis to on gauges. Load front of car until chassis rests on front gauges. For both castor and camber, shim thickness will alter angle about 1 deg. Note that on chassis before Nos. 660126 and 670439, castor angle is 3 deg. On and after these numbers, 3 deg. Earlier castor angle still holds for earlier cars.

Wheel balance, both static and dynamic, is regarded as important.

STEERING GEAR

Burman F-type worm and nut, with recirculating balls.

To remove gear from car, remove radiator core and disconnect horn push wire from relay. Slacken two grub-screws in steering wheel hub and remove horn push and wire. Extract spring ring and draw off wheel. Detach cover board below facia panel, column support bracket and seat dust cover. Remove front wheel on steering side, detach brake fluid reservoir and wing valance. Disconnect drop arm from track rod. Remove upper front suspension bolt, releasing gear, which can then be drawn out below front of wings if gear is turned with drop arm outwards. Screenwiper motor bracket may have to be detached to give clearance for column.

Steering column and nut carried in cup-and-cone ball bearings at lower end (14 loose balls in each bearing), adjusted by shims under lower end plate. Column tube detachable from box. Nut has 14 loose recirculating balls.

End play in rocker shaft adjusted by grub-screw and locknut in top cover. Test for 0.003 in float on each lock by lever under drop arm. Rocker shaft turns in bushes in box (not serviced separately). Upper end of column supported in composition bush.

STEERING DATA

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Castor</td>
<td>3 deg *</td>
</tr>
<tr>
<td>Camber</td>
<td>11½ deg.</td>
</tr>
<tr>
<td>King pin inclination</td>
<td>5 deg.</td>
</tr>
<tr>
<td>Turn in</td>
<td>3½ in</td>
</tr>
<tr>
<td>No. of turns lock to lock</td>
<td>3</td>
</tr>
</tbody>
</table>

*Castor 5 deg before chassis Nos. 660126 670439

SHOCK ABSORBERS

Fronts: Newton telescopic hydraulic. No provision for topping-up, but if replenishment is needed, remove shock absorber and dismantle. Mount
upright with lower eye gripped in vice, and pull out piston rod, exposing gland nut (3/8in B.S.F.). Undo nut and remove inner assembly by pulling piston rod up sharply. Wash and blow out with compressed air. Reassemble inner cylinder and foot valve. Four in 130 c.c. of fresh fluid, assemble piston, tighten gland nut and work piston rod up and down through full stroke until uniform resistance is felt.

Reas Rair Girling FV7 piston type. To top up, disconnect linkage and work arm up and down to expel air.

BODY

Body and front wings can be removed as unit. Mounting points at front of wings, wing valances, scuttle (just behind bell-housing), two brackets on each side, with aluminium packing pieces, and three on each side of boot floor. Packing pieces on side brackets should be used to line up body so that doors close properly. Usual number of packings is four on front brackets, five on rear. Straight sections of chassis frame side members at front and rear, and cross-member behind gearbox, covered with black felt, stuck with Bostik.

Rear wings are detachable, bolted to body. If front wing is damaged it can be replaced. Attached to body by pop-riaving along scuttle fold and round hinge post, to which it is pinned by spot-welding. Wings are welded together at forward extremity. All visible joints are filled with body solder.

JAGUAR XK 120 WIRING DIAGRAM

TRAILER ATTACHMENT

No provision made. No towing capacity quoted.